(Non)local Γ-convergence

Authors

  • Serena Dipierro Department of Mathematics and Statistics, University of Western Australia,35 Stirling Highway, WA6009 Crawley http://orcid.org/0000-0003-4386-4485
  • Pietro Miraglio Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milan; Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
  • Enrico Valdinoci Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, WA6009 Crawley http://orcid.org/0000-0001-6222-2272

DOI:

https://doi.org/10.6092/issn.2240-2829/10580

Keywords:

Γ-convergence, pointwise convergence, energy and density estimates, long-range phase transitions, nonlocal perimeter, capillarity, water waves

Abstract

We present some long-range interaction models for phase coexistence which have recently appeared in the literature, recalling also their relation to classical interface and capillarity problems. In this note, the main focus will be on the Γ-convergence methods, emphasizing similarities and differences between the classical theory and the new trends of investigation. In doing so, we also obtain some new, more precise Γ-convergence results in terms of ``interior'' and ``exterior'' contributions. We also discuss the structural differences between Γ-limits and ``pointwise'' limits, especially concerning the ``boundary terms''.

References

Alberti, G.; Bellettini, G., A non-local anisotropic model for phase transitions: Asymptotic behaviour of rescaled energies, European J. Appl. Math. 9 (1998), 261-284.

Alberti, G.; Bellettini, G.; Cassandro, M.; Presutti, E., Surface tension in Ising systems with Kac potentials, J. Statist. Phys. 82 (1996), 743-796.

Alberti, G.; Bouchitté, G.; Seppecher, P., Un résultat de perturbations singuli`eres avec la norme H1/2, C. R. Acad. Sci. Paris S ́er. I Math., 319 (1994) 4, 333-338.

Alberti, G.; Bouchitté, G.; Seppecher, P., Phase transition with the line-tension effect, Arch. Rational Mech. Anal., 144 (1998) 1, 1-46.

Allen, S. M.; Cahn, J. W., Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metall. 20 (1972) 3, 423-433.

Ambrosio, L; De Philippis, G; Martinazzi, L., Gamma-convergence of nonlocal perimeter func- tionals, Manuscripta Math., 134 (2011) 3-4, 377-403.

Bourgain, J., Brezis, H., Mironescu, P., Another look at Sobolev spaces. Optimal control and partial differential equations, 439-455, IOS, Amsterdam, 2001.

Braides, A., Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applica- tions, 22 (2002).

Brezis, H.; Nguyen, H.-M., Non-local functionals related to the total variation and connections with image processing, Ann. PDE 4 (2018), no. 1, Art. 9, 77 pp.

Brezis, H.; Nguyen, H.-M., Γ-convergence of non-local, non-convex functionals in one dimension, preprint, arXiv:1909.02160 (2019).

Brezis, H.; Nguyen, H.-M., Non-local, non-convex functionals converging to Sobolev norms, Non- linear Anal. 191 (2020), 111626, 9 pp.

Caffarelli, L. A.; Co ́rdoba, A., Uniform convergence of a singular perturbation problem. Comm. Pure Appl. Math. 48 (1995), no. 1, 1-12.

Caffarelli, L.; Roquejoffre, J.-M.; Savin, O., Nonlocal minimal surfaces Comm. Pure Appl. Math., 63 (2010), 1111-1144.

Cahn, J.W.; Hilliard, J.E., Free energy of a non-uniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.

Chan, H.; Wei, J., On De Giorgi’s conjecture: recent progress and open problems, Sci. China Math., 61 (2018), 1925-1946.

Dal Maso, G., An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkh ̈auser Boston, Inc., Boston, MA (1993).

Dávila, J. On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations 15 (2002), 519–527.

De Giorgi, E., Sulla convergenza di alcune successioni d’integrali del tipo dell’area, Collection of articles dedicated to Mauro Picone on the occasion of his ninetieth birthday, Rend. Mat. (6) 8 (1975), 277-294.

De Giorgi, E., Convergence problems for functionals and operators. Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 131–188, Pitagora, Bologna (1979).

De Giorgi, E.; Franzoni, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842-850.

Dipierro, S.; Maggi, F.; Valdinoci, E., Asymptotic expansions of the contact angle in nonlocal capillarity problems, J. Nonlinear Sci. 27 (2017) 5, 1531-1550.

Dipierro, S.; Miraglio, P.; Valdinoci, E., Symmetry results for the solutions of a partial differential equation arising in water waves, to appear in 2019 MATRIX Annals, preprint: arXiv:1901.03581.

Dipierro, S.; Valdinoci, E., Long-range phase coexistence models: Recent progress on the fractional Allen-Cahn equation. In: M. Hintermu ller J. F. Rodrigues, Ed., Topics in applied analysis and optimisation. Partial Differential Equations, Stochastic and Numerical Analysis. Joint CIM-WIAS Workshop, TAAO 2017, Lisbon, Portugal, December 6-8, 2017. CIM Series in Mathematical Sciences. Springer, Cham (2020).

Farina, A.; Valdinoci, E., The state of the art for a conjecture of De Giorgi and related problems, Recent progress on reaction-diffusion systems and viscosity solutions, World Sci.Publ., Hackensack, NJ, (2009), 74-96.

Giusti, E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 80, Birk ̈ahuser (1984).

González, M.d.M., Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differential Equations, 36 (2009), 173-210.

Lombardini, L., Fractional perimeters from a fractal perspective. Adv. Nonlinear Stud. 19 (2019), 165-196.

Maggi, F., Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, 135 (2012).

Maggi, F.; Valdinoci, E., Capillarity problems with nonlocal surface tension energies, Comm. Partial Differential Equations 42 (2017), 1403-1446.

Miraglio, P.; Valdinoci, E., Energy asymptotics of a Dirichlet to Neumann problem related to water waves, preprint, arXiv:1909.02429 (2019).

Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142.

Modica, L., Gradient theory of phase transitions with boundary contact energy, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 487-512.

Modica L.; Mortola S., Un esempio di Γ-convergenza, (Italian) Boll. Un. Mat. Ital. B (5) 14 (1977), 285-299.

Palatucci, G.; Savin, O.; Valdinoci, E., Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat. Pura Appl. (4) 192 (2013), no. 4, 673-718.

Ponce, A. C., A new approach to Sobolev spaces and connections to Γ-convergence. Calc. Var. Partial Differential Equations 19 (2004), 229-255.

Rowlinson, J. S., Translation of J. D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. J. Statist. Phys. 20 (1979) 2, 197-244.

Savin, O.; Valdinoci, E., Density estimates for a nonlocal variational model via the Sobolev inequality. SIAM J. Math. Anal., 43 (2011), no. 6, 2675-2687.

Savin, O.; Valdinoci, E., Γ-convergence for nonlocal phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479-500.

Savin, O.; Valdinoci, E., Density estimates for a variational model driven by the Gagliardo norm. J. Math. Pures Appl. (9), 101 (2014), 1-26.

Downloads

Published

2020-03-28

How to Cite

Dipierro, S., Miraglio, P., & Valdinoci, E. (2020). (Non)local Γ-convergence. Bruno Pini Mathematical Analysis Seminar, 11(1), 68–93. https://doi.org/10.6092/issn.2240-2829/10580