On principal frequencies and inradius in convex sets
DOI:
https://doi.org/10.6092/issn.2240-2829/8945Parole chiave:
Convex sets, p-Laplacian, nonlinear eigenvalue problems, inradius, Cheeger constantAbstract
We generalize to the case of the p-Laplacian an old result by Hersch and Protter. Namely, we show that it is possible to estimate from below the first eigenvalue of the Dirichlet p-Laplacian of a convex set in terms of its inradius. We also prove a lower bound in terms of isoperimetric ratios and we briefly discuss the more general case of Poincarè-Sobolev embedding constants. Eventually, we highlight an open problem.Downloads
Pubblicato
2018-12-31
Come citare
Brasco, L. (2018). On principal frequencies and inradius in convex sets. Bruno Pini Mathematical Analysis Seminar, 9(1), 78–101. https://doi.org/10.6092/issn.2240-2829/8945
Fascicolo
Sezione
Articoli
Licenza
Copyright (c) 2018 Lorenzo Brasco
I diritti d'autore e di pubblicazione di tutti i testi nella rivista appartengono ai rispettivi autori senza restrizioni.
La rivista è distribuita sotto una Creative Commons Attribution 4.0 International License (licenza completa).
Vedere inoltre la nostra Open Access Policy.