Alcune osservazioni sui proiettori armonici su sfere

Autori

  • Valentina Casarino Università di Bologna

DOI:

https://doi.org/10.6092/issn.2240-2829/6685

Parole chiave:

Complex and quaternionic spheres, SubLaplacian, Laplace-Beltrami operator, Joint spectral projections, Lp eigenfunction bounds, Jacobi polynomials, Zernike polynomials

Abstract

Presentiamo un sunto di alcuni risultati recenti relativi alle proprieta degli operatori di proiezione armonica, che mappano lo spazio delle funzioni a quadrato sommabile sulla sfera unitaria complessa e quaternionica sopra gli autospazi congiunti per l'operatore di Laplace-Beltrami e per un sublaplaciano. Discutiamo, in particolare, analogie e differenze fra il caso reale, quello complesso e quello quaternionico.

Riferimenti bibliografici

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Courier Dover Publications, 2012.

F. Astengo, M. G. Cowling and B. Di Blasio, The Cayley transform and uniformly bounded representations, J. Funct. Anal., 213 (2004), 241-269.

F. Baudoin and J.Wang, The Subelliptic Heat Kernels of the Quaternionic Hopf Fibration, Potential Analysis, 41(3) (2014), 959-982.

N. Burq, P. Gerard and N. Tzvetkov, Strichartz inequalities and the non-linear Schrodinger equation on compact manifold, Amer. J. Math. 126 (2004), 569-605.

V. Casarino, Norms of complex harmonic projection operators, Canad. J. Math., 55 (2003), 1134-1154.

V. Casarino, Two-parameter estimates for joint spectral projections on complex spheres, Math. Z., 261 (2009), 245-259.

V. Casarino and P. Ciatti, Transferring Lp eigenfunction bounds from S2n+1 to hn, Studia Math., 194 (2009), 23-42.

V. Casarino and P. Ciatti, Lp joint eigenfunction bounds on quaternionic spheres, to appear in Journal of Fourier Analysis and Applications.

V. Casarino and P. Ciatti, Some harmonic analysis on quaternionic spheres, in preparation.

V. Casarino and M. M. Peloso, Lp - summability of Riesz means for the sublaplacian on complex spheres, J. Lond. Math. Soc. 83 (2011), 137-152.

V. Casarino and M. Peloso, Strichartz estimates and the nonlinear Schrodinger equation for the sublaplacian on complex spheres, Trans. Amer. Math. Soc. 367 (2015), 2631-2664.

D. Geller, The Laplacian and the Kohn Laplacian for the sphere, J. Di. Geom. 15 (1980), 417-435.

D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrodinger operators (with an appendix by E. M. Stein), Ann. Math., 121 (2) (1985), 463-494.

K. D. Johnson and N. R. Wallach, Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc., 229 (1977), 137-173.

A. U. Klymik and N. Ja. Vilenkin, Representation of Lie groups and special functions. Vol. 2. Class I representations, special functions and integral transforms, Kluwer Academic Publishers, 1993.

B. Kostant, On the existence and the irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627-642.

C. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. J., 53 (1986 ), 43-65.

C. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math. (2) 126 (1987), 439-447.

C. Sogge, Strong uniqueness theorems for second order elliptic dierential equations, Am. J. Math., 112 (1990), 943-984.

C. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, 105, Cambridge University Press, Cambridge, 1993.

C. Sogge, Lectures on eigenfunctions of the Laplacian, Topics in Mathematical Analysis, Ser. Anal. Appl. Comput., (2008), 337-360.

E. M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.

E. M. Stein and G. L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.

G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol.23, Amer. Math. Soc., 4th ed. Providence, R.I.(1974).

A.Wunsche, Generalized Zernike or disc polynomials, Journal of Computational and Applied Mathematics, 174 (2005), 135-163.

Downloads

Pubblicato

2017-02-10

Come citare

Casarino, V. (2016). Alcune osservazioni sui proiettori armonici su sfere. Bruno Pini Mathematical Analysis Seminar, 7(1), 1–17. https://doi.org/10.6092/issn.2240-2829/6685

Fascicolo

Sezione

Articoli