Sul principio del confronto di Zaremba-Hopf-Oleinik nei punti caratteristici

Autori

  • Giulio Tralli Università di Bologna

DOI:

https://doi.org/10.6092/issn.2240-2829/5890

Parole chiave:

Hopf lemma, degenerate elliptic operators

Abstract

Si desidera investigare il cosiddetto lemma di Hopf per alcune equazioni ellittico-degeneri nei punti del bordo di un aperto limitato che siano caratteristici per l’operatore. Per tali equazioni, la validità del lemma di Hopf è legata al fatto che il bordo dell’aperto rifletta in qualche modo la geometria che soggiace l’operatore in questione. Vengono qui presentati alcuni recenti risultati contenuti in [21], ottenuti in collaborazione con V. Martino. Si vuole prestare particolare attenzione a condizioni sul bordo che siano stabili al variare dell’operatore in particolari classi, per esempio nella classe degli operatori orizzontalmente ellittici in forma di non-divergenza. Si studia anche come cambiano queste condizioni sul bordo nel caso di operatori degeneri che ammettano termini del primo ordine.

Riferimenti bibliografici

A.D. Aleksandrov. Uniqueness theorems for surfaces in the large. I. Vestnik Leningrad. Univ., 11 (1956) 5-17.

R. Alvarado, D. Brigham, V. Maz’ya, M. Mitrea, E. Ziadé. On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-Oleinik boundary point principle. J. Math. Sci. (N. Y.), 176 (2011) 281-360.

K. Amano. Maximum principles for degenerate elliptic-parabolic operators. Indiana Univ. Math. J., 28 (1979) 545-557.

I. Birindelli, A. Cutrì. A semi-linear problem for the Heisenberg Laplacian. Rend. Sem. Mat. Univ. Padova, 94 (1995) 137-153.

A. Bonfiglioli, E. Lanconelli, F. Uguzzoni. Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin 2007.

M. Bramanti, G. Cupini, E. Lanconelli, E. Priola. Global Lp estimates for degenerate Ornstein-Uhlenbeck operators. Math. Z., 266 (2010) 789-816.

G. Citti, E. Lanconelli, A. Montanari. Smoothness of Lipschitz-continuous graphs with nonvanishing Levi curvature. Acta Math., 188 (2002) 87-128.

G. Giraud. Généralisation des problèmes sur les opérations du type elliptique. Bull. Sci. Math., 56 (1932) 316-352.

E. Höpf. A remark on linear elliptic differential equations of second order. Proc. Amer. Math. Soc., 3 (1952) 791-793.

J. Hounie, E. Lanconelli. An Alexandrov type theorem for Reinhardt domains of ℂ2 , in ”Recent progress on some problems in several complex variables and partial differential equations”. Contemp. Math., 400 (2006) 129-146.

L. Kamynin, B.N. Khimčenko. Theorems of Giraud type for second order equations with a weakly degenerate non-negative characteristic part. Sibirsk. Mat. Ž. 18 (1977) 103-121.

E. Lanconelli. Maximum Principles and symmetry results in sub-Riemannian settings, in ”Symmetry for elliptic PDEs”. Contemp. Math., 528 (2010) 17-33.

E. Lanconelli, S. Polidoro. On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Pol. Torino, 52 (1994) 29-63.

Y.Y. Li, L. Nirenberg. A geometric problem and the Hopf lemma. I. J. Eur. Math. Soc. (JEMS), 8 (2006) 317-339.

Y.Y. Li, L. Nirenberg. A geometric problem and the Hopf lemma. II. Chinese Ann. Math. Ser. B, 27 (2006) 193-218.

G.M. Lieberman. Regularized distance and its applications. Pacific J. Math., 117 (1985) 329-352.

A. Lunardi. Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in ℝn. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997) 133-164.

V. Martino, A. Montanari. On the characteristic direction of real hypersurfaces in ℂn+1 and a symmetry result. Adv. Geom., 10 (2010) 371-377.

V. Martino, A. Montanari. Integral formulas for a class of curvature PDE’s and applications to isoperimetric inequalities and to symmetry problems. Forum Math., 22 (2010) 255-267.

V. Martino, G. Tralli. High-order Levi curvatures and classification results. Ann. Global Anal. Geom., 46 (2014) 351-359.

V. Martino, G. Tralli. On the Hopf-Oleinik lemma for degenerate-elliptic equations at characteristic points. Submitted (preprint available at www.dm.unibo.it/~martino/MartinoTralliHopf.pdf).

A. Montanari, E. Lanconelli. Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems. J. Differential Equations, 202 (2004) 306-331.

R. Monti, D. Morbidelli. Kelvin transform for Grushin operators and critical semilinear equations. Duke Math. J., 131 (2006) 167-202.

R. Monti, D. Morbidelli. Levi umbilical surfaces in complex space. J. Reine Angew. Math., 603 (2007) 113-131.

D.D. Monticelli. Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators. J. Eur. Math. Soc. (JEMS), 12 (2010) 611-654.

A.I. Nazarov. A centennial of the Zaremba-Hopf-Oleinik lemma. SIAM J. Math. Anal., 44 (2012) 437-453.

P. Niu, Y. Han, J. Han. A Hopf type lemma and a CR type inversion for the generalized Greiner operator. Canad. Math. Bull., 47 (2004) 417-430.

O.A. Oleǐnik. On properties of solutions of certain boundary problems for equations of elliptic type. Mat. Sbornik N.S., 30 (1952) 695-702.

J. Serrin. A symmetry problem in potential theory. Arch. Rational Mech. Anal., 43 (1971) 304-318.

G. Tralli. Double Ball Property for non-divergence horizontally elliptic operators on step two Carnot groups. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 23 (2012) 351-360.

G. Tralli. A certain critical density property for invariant Harnack inequalities in H-type groups. J. Differential Equations, 256 (2014) 461-474.

S. Zaremba. Sur un problème mixte relatif à l’équation de Laplace. Bull. Int. Acad. Sci. Cracovie, Cl. Sci. Math., (1910) 313-344.

Downloads

Pubblicato

2015-12-28

Come citare

Tralli, G. (2015). Sul principio del confronto di Zaremba-Hopf-Oleinik nei punti caratteristici. Bruno Pini Mathematical Analysis Seminar, 6(1), 54–68. https://doi.org/10.6092/issn.2240-2829/5890

Fascicolo

Sezione

Articoli