Inverse Problems for Parabolic Differential Equations from Control Theory

Autori

  • Mohammed Al Horani The University of Jordan, Amman
  • Angelo Favini Università di Bologna

DOI:

https://doi.org/10.6092/issn.2240-2829/5887

Parole chiave:

Inverse problem, Hilbert space, Linear differential problem, First-Order differential equations, Second-Order differential equations

Abstract

In questo articolo vengono considerati alcuni problemi inversi relativi ad equazioni differenziali paraboliche in spazi di Hilbert, sia del primo che del secondo ordine. Tutti i risultati astratti si applicano a problemi inversi per equazioni alle derivate parziali di tipo parabolico di interesse nella fisica matematica e in teoria del controllo ottimo. In effetti, sono descritti vari esempi concreti ai quali la nostra teoria si applica.

Riferimenti bibliografici

M. Al Horani and A. Favini. Perturbation Method for First and Complete Second Order Differential Equations. J. Optim. Theory Appl., 130 (2015), 949-967.

M. Al Horani and A. Favini. Parabolic First and Second Order Differential Equations. To appear

M. Al Horani and A. Favini. An Identification Problem for First-Order Degenerate Differential Equations. J. Optim. Theory Appl., 130 (2006), 41-60.

M. Al Horani and A. Favini. Degenerate First-Order Inverse Problems In Banach Spaces. Nonlinear Analysis, Theory, Methods, and Applications, 75 (2012), 68-77.

M. Al Horani and A. Favini. Degenerate First-Order Identification Problems in Banach Spaces. In: Favini, A., Lorenzi, A.(eds.): Differential Equations Inverse and Direct Problems, Taylor and Francis Group, Boca Raton (2006), 1-15.

A. Favini, A. Lorenzi and H. Tanabe. Direct and Inverse Degenerate Parabolic Differential Equations with Multivalued Operators. Electron. J. Diff. Equ., 2015 (2015), 1-22.

A. Favini and H. Tanabe. Degenerate Differential Equations and Inverse Problems. In: A. Yagi, Y. Yamamoto (eds.): Partial Differential Equations, (2013), 89-100.

A. Favini and A. Yagi. Degenerate differential equations in Banach spaces, Marcel Dekker. Inc. New York, (1999).

I. Lasiecka and R. Triggiani. Control theory for partial differential equations. II. Abstract hyperbolic-like systems over a finite time horizon, Cambridge University Press, Cambridge, (2000).

J. L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications, Springer-Verlag, Berlin, vol. 1 (1972).

A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems, 1ist ed, Birkhäuser, Basel, (1995).

I. Prilepko, G. Orlovsky and A. Vasin. Methods for solving inverse problems in mathematical physics. Marcel Dekker. Inc. New York, (2000).

H. Triebel. Interpolation theory, function spaces, differential operators, North-Holland, Amesterdam, (1978).

Downloads

Pubblicato

2015-12-28

Come citare

Al Horani, M., & Favini, A. (2015). Inverse Problems for Parabolic Differential Equations from Control Theory. Bruno Pini Mathematical Analysis Seminar, 6(1), 1–14. https://doi.org/10.6092/issn.2240-2829/5887

Fascicolo

Sezione

Articoli