Regularity for quasilinear PDEs in Carnot groups via Riemannian approximation

Autori

  • András Domokos Department of Mathematics and Statistics, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819 http://orcid.org/0000-0003-2369-4888
  • Juan J. Manfredi Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15260 http://orcid.org/0000-0003-3305-8535

DOI:

https://doi.org/10.6092/issn.2240-2829/10589

Parole chiave:

Carnot groups, Riemannian approximation, subelliptic, p-Laplacian

Abstract

Sunto. Studiamo la regolarità interna delle soluzioni deboli di EDP, quasilineari subellittiche in gruppi di Carnot, della forma

Σi=1m1Xi (Φ(|∇Hu|2)Xiu) = 0.

Qui ∇Hu = (X1u,...,Xmiu) è il gradiente orizzontale, δ > 0 e l'esponente p ∈ [2, p*), dove p* dipende dal passo ν e dalla dimensione omogenea Q del gruppo ed è dato da

p* = min {2ν ∕ ν-1 , 2Q+8 ∕ Q-2}.

Riferimenti bibliografici

Luca Capogna. Regularity of quasi-linear equations in the Heisenberg group. Comm. Pure Appl. Math., 50(9):867–889, 1997.

Luca Capogna. Regularity for quasilinear equations and 1-quasiconformal maps in Carnot groups. Math. Ann., 313(2):263–295, 1999.

Luca Capogna and Giovanna Citti. Regularity for subelliptic PDE through uniform estimates in multi-scale geometries. Bull. Math. Sci., 6(2):173–230, 2016.

Luca Capogna, Giovanna Citti, Enrico Le Donne, and Alessandro Ottazzi. Conformality and Q-harmonicity in sub-Riemannian manifolds. J. Math. Pures Appl. (9), 122:67–124, 2019.

Luca Capogna, Giovanna Citti, and Garrett Rea. A subelliptic analogue of Aronson-Serrin’s Harnack inequality. Math. Ann., 357(3):1175–1198, 2013.

András Domokos and Juan J. Manfredi. Nonlinear subelliptic equations. Manuscripta Math., 130(2):251–271, 2009.

András Domokos and Juan J. Manfredi. Hilbert-Haar coordinates and Miranda’s theorem in Lie groups. To appear in this volume, 2020.

András Domokos. On the regularity of subelliptic p-harmonic functions in Carnot groups. Nonlinear Anal., 69(5-6):1744–1756, 2008.

Lars H ̈ormander. Hypoelliptic second order differential equations. Acta Math., 119:147–171, 1967.

David Jerison. The Poincaré inequality for vector fields satisfying

H ̈ormander’s condition. Duke Math. J., 53(2):503–523, 1986.

Olga A. Ladyzhenskaya and Nina N. Ural’tseva. Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London, 1968.

Mario Miranda. Un teorema di esistenza e unicità per il problema dell’area minima in n variabili. Ann. Scuola Norm. Sup. Pisa (3), 19:233–249, 1965.

Juan J. Manfredi and Giuseppe Mingione. Regularity results for quasilinear elliptic equations in the Heisenberg group. Math. Ann., 339(3):485–544, 2007.

Giuseppe Mingione, Anna Zatorska-Goldstein, and Xiao Zhong. Gradient regularity for el- liptic equations in the Heisenberg group. Adv. Math., 222(1):62–129, 2009.

Alexander Nagel, Elias M. Stein, and Stephen Wainger. Balls and metrics defined by vector fields. I. Basic properties. Acta Math., 155(1-2):103–147, 1985.

Diego Ricciotti. p-Laplace equation in the Heisenberg group. SpringerBriefs in Mathematics. Springer, [Cham]; BCAM Basque Center for Applied Mathematics, Bilbao, 2015. Regularity of solutions, BCAM SpringerBriefs.

K. Uhlenbeck. Regularity for a class of non-linear elliptic systems. Acta Math., 138(3-4):219– 240, 1977.

Xiao Zhong. Regularity for variational problems in the Heisenberg group. (arXiv:1711.03284v1), 2017.

Downloads

Pubblicato

2020-03-28

Come citare

Domokos, A., & Manfredi, J. J. (2020). Regularity for quasilinear PDEs in Carnot groups via Riemannian approximation. Bruno Pini Mathematical Analysis Seminar, 11(1), 119–142. https://doi.org/10.6092/issn.2240-2829/10589