Large sets at infinity and Maximum Principle on unbounded domains for a class of sub-elliptic operators
DOI:
https://doi.org/10.6092/issn.2240-2829/10364Parole chiave:
Maximum principle, sub-elliptic operators, homogeneous Hormander operators, subharmonic and superharmonic functionsAbstract
Maximum Principles on unbounded domains play a crucial role in several problems related to linear second-order PDEs of elliptic and parabolic type. In the present notes, based on a joint work with prof. E. Lanconelli, we consider a class of sub-elliptic operators L in R^N and we establish some criteria for an unbounded open set to be a Maximum Principle set for L. We extend some classical results related to the Laplacian(proved by Deny, Hayman and Kennedy) and to the sub-Laplacians on homogeneous Carnot groups (proved by Bonfiglioli and Lanconelli).
Downloads
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2019 Stefano Biagi
I diritti d'autore e di pubblicazione di tutti i testi nella rivista appartengono ai rispettivi autori senza restrizioni.
La rivista è distribuita sotto una Creative Commons Attribution 4.0 International License (licenza completa).
Vedere inoltre la nostra Open Access Policy.