Sobolev-Poincaré inequalities for differential forms and currents
DOI:
https://doi.org/10.6092/issn.2240-2829/10361Parole chiave:
Differential forms, Sobolev-Poincaré inequalities, homotopy formula, currentsAbstract
In this note we collect some results in R^n about (p,q) Poincaré and Sobolev inequalities for differential forms obtained in a joint research with Franchi and Pansu. In particular, we focus to the case p=1. From the geometric point of view, Poincaré and Sobolev inequalities for differential forms provide a quantitative formulation of the vanishing of the cohomology. As an application of the results obtained in the case p=1 we obtain Poincaré and Sobolev inequalities for Euclidean currents.
Downloads
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2019 Annalisa Baldi
I diritti d'autore e di pubblicazione di tutti i testi nella rivista appartengono ai rispettivi autori senza restrizioni.
La rivista è distribuita sotto una Creative Commons Attribution 4.0 International License (licenza completa).
Vedere inoltre la nostra Open Access Policy.