Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems

Authors

  • Francesca Colasuonno Università di Bologna
  • Benedetta Noris Université de Picardie Jules Verne

DOI:

https://doi.org/10.6092/issn.2240-2829/7797

Keywords:

Quasilinear elliptic equations, Shooting method, Variational methods, Sobolev-supercritical nonlinearities, Neumann boundary conditions

Abstract

This paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity that can be supercritical in the sense of Sobolev embeddings. The main tools used are variational techniques and the shooting method for ODE's. These results are contained in A. Boscaggin, F. Colasuonno, B. Noris. Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions. ESAIM Control Optim. Calc. Var., DOI: 10.1051/cocv/2016064 (2017; F. Colasuonno, B. Noris. A p-Laplacian supercritical Neumann problem. Discrete Contin. Dyn. Syst., 37 (2017) 3025-3057.

Downloads

Published

2018-05-31

How to Cite

Colasuonno, F., & Noris, B. (2017). Radial Positive Solutions for p-Laplacian Supercritical Neumann Problems. Bruno Pini Mathematical Analysis Seminar, 8(1), 55–72. https://doi.org/10.6092/issn.2240-2829/7797

Issue

Section

Articles