Regularity for quasilinear PDEs in Carnot groups via Riemannian approximation
DOI:
https://doi.org/10.6092/issn.2240-2829/10589Keywords:
Carnot groups, Riemannian approximation, subelliptic, p-LaplacianAbstract
We study the interior regularity of weak solutions to subelliptic quasilinear PDEs in Carnot groups of the form
Σi=1m1Xi (Φ(|∇Hu|2)Xiu) = 0.
Here ∇Hu = (X1u,...,Xmiu) is the horizontal gradient, δ > 0 and the exponent p ∈ [2, p*), where p* depends on the step ν and the homogeneous dimension Q of the group, and it is given by
p* = min {2ν ∕ ν-1 , 2Q+8 ∕ Q-2}.
References
Luca Capogna. Regularity of quasi-linear equations in the Heisenberg group. Comm. Pure Appl. Math., 50(9):867–889, 1997.
Luca Capogna. Regularity for quasilinear equations and 1-quasiconformal maps in Carnot groups. Math. Ann., 313(2):263–295, 1999.
Luca Capogna and Giovanna Citti. Regularity for subelliptic PDE through uniform estimates in multi-scale geometries. Bull. Math. Sci., 6(2):173–230, 2016.
Luca Capogna, Giovanna Citti, Enrico Le Donne, and Alessandro Ottazzi. Conformality and Q-harmonicity in sub-Riemannian manifolds. J. Math. Pures Appl. (9), 122:67–124, 2019.
Luca Capogna, Giovanna Citti, and Garrett Rea. A subelliptic analogue of Aronson-Serrin’s Harnack inequality. Math. Ann., 357(3):1175–1198, 2013.
András Domokos and Juan J. Manfredi. Nonlinear subelliptic equations. Manuscripta Math., 130(2):251–271, 2009.
András Domokos and Juan J. Manfredi. Hilbert-Haar coordinates and Miranda’s theorem in Lie groups. To appear in this volume, 2020.
András Domokos. On the regularity of subelliptic p-harmonic functions in Carnot groups. Nonlinear Anal., 69(5-6):1744–1756, 2008.
Lars H ̈ormander. Hypoelliptic second order differential equations. Acta Math., 119:147–171, 1967.
David Jerison. The Poincaré inequality for vector fields satisfying
H ̈ormander’s condition. Duke Math. J., 53(2):503–523, 1986.
Olga A. Ladyzhenskaya and Nina N. Ural’tseva. Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London, 1968.
Mario Miranda. Un teorema di esistenza e unicità per il problema dell’area minima in n variabili. Ann. Scuola Norm. Sup. Pisa (3), 19:233–249, 1965.
Juan J. Manfredi and Giuseppe Mingione. Regularity results for quasilinear elliptic equations in the Heisenberg group. Math. Ann., 339(3):485–544, 2007.
Giuseppe Mingione, Anna Zatorska-Goldstein, and Xiao Zhong. Gradient regularity for el- liptic equations in the Heisenberg group. Adv. Math., 222(1):62–129, 2009.
Alexander Nagel, Elias M. Stein, and Stephen Wainger. Balls and metrics defined by vector fields. I. Basic properties. Acta Math., 155(1-2):103–147, 1985.
Diego Ricciotti. p-Laplace equation in the Heisenberg group. SpringerBriefs in Mathematics. Springer, [Cham]; BCAM Basque Center for Applied Mathematics, Bilbao, 2015. Regularity of solutions, BCAM SpringerBriefs.
K. Uhlenbeck. Regularity for a class of non-linear elliptic systems. Acta Math., 138(3-4):219– 240, 1977.
Xiao Zhong. Regularity for variational problems in the Heisenberg group. (arXiv:1711.03284v1), 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 András Domokos, Juan J. Manfredi
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
This journal is licensed under a Creative Commons Attribution 4.0 International License. (full legal code)
See also our Open Access Policy.