Identification for General Degenerate Problems of Hyperbolic Type

Authors

  • Angelo Favini University of Bologna
  • Gabriela Marinoschi Institute of Mathematical Statistics and Applied Mathematics, Bucharest

DOI:

https://doi.org/10.6092/issn.2240-2829/6698

Abstract

A degenerate identification problem in Hilbert space is described, improving a previous paper [2]. An application to second order evolution equations of hyperbolic type is given. The abstract results are applied to concrete differential problems of interest in applied sciences.

References

K.-J. Engel, R. Nagel: One-parameter semigroups for linear evolution equations, Springer, 2000.

Favini, A., Marinoschi, G.: Identification for degenerate problems of hyperbolic type, Appl. Anal., 91 (8) (2012), 1511-1527.

Favini, A., Marinoschi, G., Tanabe, H., Yakubov, Y.: Identification for general degenerate problems of hyperbolic type in Hilbert spaces, Preprint.

Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces, Pure and Appl. Math., 215, Dekker, New York, Basel, Hong Kong, 1999.

Lorenzi, A.: An introduction to identification problems problems via functional analysis, Inverse and Ill-Posed Problems Series, 2001.

Downloads

Published

2017-02-10

How to Cite

Favini, A., & Marinoschi, G. (2016). Identification for General Degenerate Problems of Hyperbolic Type. Bruno Pini Mathematical Analysis Seminar, 7(1), 175–188. https://doi.org/10.6092/issn.2240-2829/6698

Issue

Section

Articles