A Measure Zero UDS in the Heisenberg Group
DOI:
https://doi.org/10.6092/issn.2240-2829/6692Keywords:
Universal differentiability sets, Heisenberg group, Pansu differentiabilityAbstract
We show that the Heisenberg group contains a measure zero set N such that every real-valued Lipschitz function is Pansu differentiable at a point of N.
References
Alberti, G., Csornyei, M., Preiss, D.: Differentiability of Lipschitz functions, structure of null sets, and other problems, Proc. Int. Congress Math. III (2010), 1379-1394.
Bate, D.: Structure of measures in Lipschitz differentiability spaces, J. Amer. Math. Soc. 28 (2015), 421-482.
Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monographs in Mathematics (2007).
Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9(3) (1999), 428-517.
Capogna, L., Danielli, D., Pauls, S., Tyson, J.: An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Birkhauser Progress in Mathematics 259 (2007).
Csornyei, M., Jones, P.: Product formulas for measures and applications to analysis and geometry, announced result: http://www.math.sunysb.edu/Videos/dfest/PDFs/38-Jones.pdf.
De Philippis, G., Rindler, F.: On the structure of A-free measures and applications, Annals of Math. ArXiv: 1601.06543.
Doré M., Maleva O.: A compact null set containing a Differentiability point of every Lipschitz function, Math. Ann. 351(3) (2011), 633-663.
Doré, M., Maleva, O.: A compact universal differentiability set with Hausdorff dimension one, Israel J. Math. 191(2) (2012), 889-900.
Dymond, M., Maleva, O.: Differentiability inside sets with upper Minkowski dimension one, preprint available at arXiv:1305.3154.
Fitzpatrick, S.: Differentiation of real-valued functions and continuity of metric projections, Proc. Amer. Math. Soc. 91(4) (1984), 544-548.
Gromov, M.: Carnot-Carath_eodory spaces seen from within, Progress in Mathematics 144 (1996), 79-323.
Lindenstrauss, J., Preiss, D., Tiser, J.: Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces, Annals of Mathematics Studies 179, Princeton University Press (2012).
Magnani, V.: Towards differential calculus in stratified groups, J. Aust. Math. Soc. 95(1) (2013), 76-128.
Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications, American Mathematical Society, Mathematical Surveys and Monographs 91 (2006).
Pansu, P.: Metriques de Carnot-Carathéodory et quasiisometries des espaces symetriques de rang un, Annals of Mathematics 129(1) (1989), 1-60.
Preiss, D.: Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91(2) (1990), 312-345.
Preiss, D., Speight, G.: Differentiability of Lipschitz functions in Lebesgue null sets, Inven. Math. 199(2) (2015), 517-559.
Pinamonti, A., Speight, G.: A measure zero universal differentiability set in the Heisenberg group, to appear in Mathematische Annalen, DOI: 10.1007/s00208-016-1434-x, preprint available at arXiv:1505.07986.
Zahorski, Z.: Sur l'ensemble des points de non-derivabilite d'une fonction continue, Bull. Soc. Math. France 74 (1946), 147-178.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Andrea Pinamonti, Gareth Speight
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
This journal is licensed under a Creative Commons Attribution 4.0 International License. (full legal code)
See also our Open Access Policy.