On Some Generalisations of Meyers-Serrin Theorem

Authors

  • Davide Guidetti University of Bologna
  • Batu Güneysu Humboldt-Universität zu Berlin
  • Diego Pallara Università del Salento

DOI:

https://doi.org/10.6092/issn.2240-2829/5894

Keywords:

Meyers-Serrin theorem, Differential operators on manifolds, Vector bundles

Abstract

We present a generalisation of Meyers-Serrin theorem, in which we replace the standard weak derivatives in open subsets of ℝm with finite families of linear differential operators defined on smooth sections of vector bundles on a (not necessarily compact) manifold X.

References

A.V. Balakrishnan, Applied Functional Analysis, Applications of Mathematics 3, Springer-Verlag (1976).

G. B. Folland, ”Subelliptic estimates and function spaces on nilpotent Lie groups”, Ark. Mat. 13 (1975), 161-207.

B. Franchi, R. Serapioni, F. Serra Cassano, ”Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields”, Houston J. Math. 22 (1996), 859-890.

B. Franchi, R. Serapioni, F. Serra Cassano, ”Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields”, Boll. Un. Mat. It. B 7 (1997), 83-117.

D. Guidetti, B. Güneysu, D. Pallara, ”L1 −elliptic regularity and H = W on the whole Lp −scale on arbitrary manifolds”, Preprint.

E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Lecture Notes 5, American Mathematical Society Courant Institute of Mathematical Sciences (2000).

N.G. Meyers, J. Serrin, ”H = W”, Proc. Nat. Acad. Sci. U.S.A 51 (1964), 1055-1056.

L.I. Nicolaescu, Lectures on the geometry of manifolds, World Scientific Publishing Co., (1996), 2 nd Edition (2007).

R. O. Wells, Differential analysis on complex manifolds, Springer Graduete Texts in Mathematics 65 (1979).

Downloads

Published

2015-12-28

How to Cite

Guidetti, D., Güneysu, B., & Pallara, D. (2015). On Some Generalisations of Meyers-Serrin Theorem. Bruno Pini Mathematical Analysis Seminar, 6(1), 116–127. https://doi.org/10.6092/issn.2240-2829/5894

Issue

Section

Articles