### Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction

#### Abstract

^{N}which coincide with the Lie algebras of the (analytic) Lie groups defined on R

^{N}(with its usual differentiable structure). We show that such a characterization amounts to asking that: (i) g is N-dimensional; (ii) g admits a set of Lie generators which are complete vector fields; (iii) g satisfies Hörmander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (R

^{N}, *) whose Lie algebra is g.

*We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.*

#### Keywords

#### Full Text:

PDF (Italiano)#### References

S. Biagi, A. Bonfiglioli. On the convergence of the Campbell-Baker-Hausdorff-Dynkin series in infinite-dimensional Banach-Lie algebras. Linear Multilinear Algebra, 62 (2014), 1591–1615

S. Biagi, A. Bonfiglioli. A completeness result for time-dependent vector fields and applications. To appear in. Commun. Contemp. Math. DOI. 10.1142/S0219199714500400

S. Biagi, A. Bonfiglioli, G. Spaletta. A tool for Lie group construction. Preprint (2015)

A. Bonfiglioli. Homogeneous Carnot groups related to sets of vector fields, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 7 (2004), 79–107

A. Bonfiglioli. An ODE’s version of the formula of Baker, Campbell, Dynkin and Hausdorff and the construction of Lie groups with prescribed Lie algebra. Mediterr. J. Math., 7 (2010), 387–414

A. Bonfiglioli, R. Fulci. Topics in Noncommutative Algebra. The Theorem of Campbell, Baker, Hausdorff and Dynkin, Lecture Notes in Mathematics, vol. 2034, Springer-Verlag. Heidelberg, 2012. ISBN. 978-3-642-22596-3

A. Bonfiglioli, E. Lanconelli. On left invariant Hörmander operators in RN. Applications to Kolmogorov-Fokker-Planck equations. Journal of Mathematical Sciences, 171(2010), 22–33

A. Bonfiglioli, E. Lanconelli. Lie groups related to Hörmander operators and Kolmogorov-Fokker-Planck equations. Commun. Pure Appl. Anal., 11 (2012), 1587–1614

A. Bonfiglioli, E. Lanconelli. Matrix exponential groups and Kolmogorov-Fokker-Planck equations. J. Evol. Equ., 12 (2012), 59–82

A. Bonfiglioli, E. Lanconelli, F. Uguzzoni. Stratified Lie Groups and Potential Theory for their sub-Laplacians, Springer Monographs in Mathematics, New York, NY, Springer 2007. ISBN. 978-3-540-71896-3

A. Bonfiglioli, A. Montanari, D. Morbidelli. A Hadamard-type open map theorem for submersions and applications to completeness results in control theory. To appear in. Ann. Mat. Pur. Appl. (2015)

M. Bramanti, G. Cupini, E. Lanconelli, E. Priola. Global Lp estimates for degenerate Ornstein-Uhlenbeck operators. Math. Z. 266 (2010), 789–816

A. Eggert. Extending the Campbell-Hausdorff multiplication. Geom. Dedicata. 46 (1993), 35–45

V. Jurdjevic, H.J. Sussmann. Control systems on Lie groups. J. Differential Equations. 12 (1972), 313–329

A. Montanari, D. Morbidelli. Nonsmooth Hörmander vector fields and their control balls. Trans. Am. Math. Soc. 364 (2012), 2339–2375

A. Montanari, D. Morbidelli. Almost exponential maps and integrability results for a class of horizontally regular vector fields. Potential Anal. 38 (2013), 611–633

D. Mumford. Elastica and computer vision. In “Algebraic geometry and its applications” (eds. Bajaj, Chandrajit) Springer-Verlag, New-York (1994), 491–506

A. Nagel, E.M. Stein, S. Wainger. Balls and metrics defined by vector fields I. basic properties. Acta Math. 155 (1985), 103–147

R.S. Palais. A global formulation of the Lie theory of transformation groups. Mem. AMS, 22 (1957).

F. Schur. Zur Theorie der endlichen Transformationsgruppen. Math. Ann., 38 (1891), 263–286

DOI: 10.6092/issn.2240-2829/4707

### Refbacks

- There are currently no refbacks.

Copyright (c) 2014 Andrea Bonfiglioli

This work is licensed under a Creative Commons Attribution 3.0 Unported License.