Lanzani-Stein inequalities in Heisenberg groups

Annalisa Baldi

Abstract


Lanzani & Stein consider a class of div-curl inequalities in de Rham's complex. In this note we examine the natural counterpart of that kind of inequalities for dierential forms in Heisenberg groups H1 and H2.


Keywords


Heisenberg groups; differential forms; Gagliardo-Nirenberg inequalities; div-curl systems

Full Text:

PDF (English)

References


[BB03] Jean Bourgain and Ham Brezis. On the equation div Y = f and application to control of phases. J. Amer. Math. Soc., 16(2):393{426 (electronic), 2003.

[BB04] Jean Bourgain and Ham Brezis. New estimates for the Laplacian, the divcurl, and related Hodge systems. C. R. Math. Acad. Sci. Paris, 338(7):539{543, 2004.

[BB07] Jean Bourgain and Ham Brezis. New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. (JEMS), 9(2):277{315, 2007.

[BF12a] Annalisa Baldi and Bruno Franchi. Maxwell's equations in anisotropic media and Maxwell's equations in Carnot groups as variational limits. preprint, 2012.

[BF12b] Annalisa Baldi and Bruno Franchi. Some remarks on vector potentials for Maxwell's equations in space-time Carnot groups. Boll. Unione Mat. Ital. (9), 5(2):337{355, 2012.

[BF13] Annalisa Baldi and Bruno Franchi. Sharp a priori estimates for div-curl systems in Heisenberg groups. J. Funct. Anal., 265(10):2388{2419, 2013.

[BFT08] Annalisa Baldi, Bruno Franchi, and Maria Carla Tesi. Compensated compactness in the contact complex of Heisenberg groups. Indiana Univ. Math. J., 57:133{186, 2008.

[BFT09] Annalisa Baldi, Bruno Franchi, and Maria Carla Tesi. Hypoellipticity, fundamental solution and Liouville type theorem for matrix{valued differential operators in Carnot groups. J. Eur. Math. Soc., 11(4):777{798, 2009.

[BFTT10] Annalisa Baldi, Bruno Franchi, Nicoletta Tchou, and Maria Carla Tesi. Compensated compactness for dierential forms in Carnot groups and applications. Adv. Math., 223(5):1555{1607, 2010.

[CDG94] Luca Capogna, Donatella Danielli, and Nicola Garofalo. The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Comm. Anal. Geom., 2(2):203{215, 1994. 74

[CVS09] Sagun Chanillo and Jean Van Schaftingen. Subelliptic Bourgain-Brezis estimates on groups. Math. Res. Lett., 16(3):487{501, 2009.

[FGW94] Bruno Franchi, Sylvain Gallot, and Richard L. Wheeden. Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., 300(4):557{571, 1994.

[FLW95] Bruno Franchi, Guozhen Lu, and Richard L. Wheeden. Representation formulas and weighted Poincare inequalities for Hormander vector elds. Ann. Inst. Fourier (Grenoble), 45(2):577{604, 1995.

[Fol75] Gerald B. Folland. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat., 13(2):161{207, 1975.

[FOV12] Bruno Franchi, Enrico Obrecht, and Eugenio Vecchi. On a class of semilinear evolution equations for vector potentials associated with Maxwell's equations in Carnot groups. Preprint, 2012.

[FS82] Gerald B. Folland and Elias M. Stein. Hardy spaces on homogeneous groups, volume 28 of Mathematical Notes. Princeton University Press, Princeton, N.J., 1982.

[FSSC07] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. Regular submanifolds, graphs and area formula in Heisenberg groups. Adv. Math., 211(1):152{203, 2007.

[FT12] Bruno Franchi and Maria Carla Tesi. Wave and Maxwell's equations in Carnot groups. Commun. Contemp. Math., 14(5):1250032, 62, 2012.

[GN96] Nicola Garofalo and Duy-Minh Nhieu. Isoperimetric and Sobolev inequalities for Carnot-Caratheodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49(10):1081{1144, 1996.

[Gro96] Mikhael Gromov. Carnot-Caratheodory spaces seen from within. In Sub-Riemannian geometry, volume 144 of Progr. Math., pages 79{323. Birkhauser, Basel, 1996.

[Hel01] Sigurdur Helgason. Dierential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.

[LS05] Loredana Lanzani and Elias M. Stein. A note on div curl inequalities. Math. Res. Lett., 12(1):57{61, 2005.

[MSC95] Pierre Maheux and Laurent Salo-Coste. Analyse sur les boules d'un operateur sous-elliptique. Math. Ann., 303(4):713{740, 1995.

[Pan82] Pierre Pansu. Geometrie du group de Heisenberg. PhD thesis, Universite Paris VII, 1982.

[Rum94] Michel Rumin. Formes dierentielles sur les varietes de contact. J. Differential Geom., 39(2):281{330, 1994.

[Rum00] Michel Rumin. Sub-Riemannian limit of the differential form spectrum of contact manifolds. Geom. Funct. Anal., 10(2):407{452, 2000.

[Rum01] Michel Rumin. Around heat decay on forms and relations of nilpotent Lie groups. In Seminaire de Theorie Spectrale et Geometrie, Vol. 19, Annee 2000{2001, volume 19 of Semin. Theor. Spectr. Geom., pages 123{164. Univ. Grenoble I, 2001.

[Ste93] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

[VS04] Jean Van Schaftingen. Estimates for L1-vector elds. C. R. Math. Acad. Sci. Paris, 339(3):181{186, 2004.

[VSCC92] Nicholas Th. Varopoulos, Laurent Salo-Coste, and Thierry Coulhon. Analysis and geometry on groups, volume 100 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1992.




DOI: 10.6092/issn.2240-2829/4153

Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Annalisa Baldi

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.