Lanzani-Stein inequalities in Heisenberg groups

Authors

  • Annalisa Baldi Università di Bologna

DOI:

https://doi.org/10.6092/issn.2240-2829/4153

Keywords:

Heisenberg groups, differential forms, Gagliardo-Nirenberg inequalities, div-curl systems

Abstract

Lanzani & Stein consider a class of div-curl inequalities in de Rham's complex. In this note we examine the natural counterpart of that kind of inequalities for dierential forms in Heisenberg groups H1 and H2.

References

[BB03] Jean Bourgain and Ham Brezis. On the equation div Y = f and application to control of phases. J. Amer. Math. Soc., 16(2):393{426 (electronic), 2003.

[BB04] Jean Bourgain and Ham Brezis. New estimates for the Laplacian, the divcurl, and related Hodge systems. C. R. Math. Acad. Sci. Paris, 338(7):539{543, 2004.

[BB07] Jean Bourgain and Ham Brezis. New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. (JEMS), 9(2):277{315, 2007.

[BF12a] Annalisa Baldi and Bruno Franchi. Maxwell's equations in anisotropic media and Maxwell's equations in Carnot groups as variational limits. preprint, 2012.

[BF12b] Annalisa Baldi and Bruno Franchi. Some remarks on vector potentials for Maxwell's equations in space-time Carnot groups. Boll. Unione Mat. Ital. (9), 5(2):337{355, 2012.

[BF13] Annalisa Baldi and Bruno Franchi. Sharp a priori estimates for div-curl systems in Heisenberg groups. J. Funct. Anal., 265(10):2388{2419, 2013.

[BFT08] Annalisa Baldi, Bruno Franchi, and Maria Carla Tesi. Compensated compactness in the contact complex of Heisenberg groups. Indiana Univ. Math. J., 57:133{186, 2008.

[BFT09] Annalisa Baldi, Bruno Franchi, and Maria Carla Tesi. Hypoellipticity, fundamental solution and Liouville type theorem for matrix{valued differential operators in Carnot groups. J. Eur. Math. Soc., 11(4):777{798, 2009.

[BFTT10] Annalisa Baldi, Bruno Franchi, Nicoletta Tchou, and Maria Carla Tesi. Compensated compactness for dierential forms in Carnot groups and applications. Adv. Math., 223(5):1555{1607, 2010.

[CDG94] Luca Capogna, Donatella Danielli, and Nicola Garofalo. The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Comm. Anal. Geom., 2(2):203{215, 1994. 74

[CVS09] Sagun Chanillo and Jean Van Schaftingen. Subelliptic Bourgain-Brezis estimates on groups. Math. Res. Lett., 16(3):487{501, 2009.

[FGW94] Bruno Franchi, Sylvain Gallot, and Richard L. Wheeden. Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., 300(4):557{571, 1994.

[FLW95] Bruno Franchi, Guozhen Lu, and Richard L. Wheeden. Representation formulas and weighted Poincare inequalities for Hormander vector elds. Ann. Inst. Fourier (Grenoble), 45(2):577{604, 1995.

[Fol75] Gerald B. Folland. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat., 13(2):161{207, 1975.

[FOV12] Bruno Franchi, Enrico Obrecht, and Eugenio Vecchi. On a class of semilinear evolution equations for vector potentials associated with Maxwell's equations in Carnot groups. Preprint, 2012.

[FS82] Gerald B. Folland and Elias M. Stein. Hardy spaces on homogeneous groups, volume 28 of Mathematical Notes. Princeton University Press, Princeton, N.J., 1982.

[FSSC07] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. Regular submanifolds, graphs and area formula in Heisenberg groups. Adv. Math., 211(1):152{203, 2007.

[FT12] Bruno Franchi and Maria Carla Tesi. Wave and Maxwell's equations in Carnot groups. Commun. Contemp. Math., 14(5):1250032, 62, 2012.

[GN96] Nicola Garofalo and Duy-Minh Nhieu. Isoperimetric and Sobolev inequalities for Carnot-Caratheodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49(10):1081{1144, 1996.

[Gro96] Mikhael Gromov. Carnot-Caratheodory spaces seen from within. In Sub-Riemannian geometry, volume 144 of Progr. Math., pages 79{323. Birkhauser, Basel, 1996.

[Hel01] Sigurdur Helgason. Dierential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.

[LS05] Loredana Lanzani and Elias M. Stein. A note on div curl inequalities. Math. Res. Lett., 12(1):57{61, 2005.

[MSC95] Pierre Maheux and Laurent Salo-Coste. Analyse sur les boules d'un operateur sous-elliptique. Math. Ann., 303(4):713{740, 1995.

[Pan82] Pierre Pansu. Geometrie du group de Heisenberg. PhD thesis, Universite Paris VII, 1982.

[Rum94] Michel Rumin. Formes dierentielles sur les varietes de contact. J. Differential Geom., 39(2):281{330, 1994.

[Rum00] Michel Rumin. Sub-Riemannian limit of the differential form spectrum of contact manifolds. Geom. Funct. Anal., 10(2):407{452, 2000.

[Rum01] Michel Rumin. Around heat decay on forms and relations of nilpotent Lie groups. In Seminaire de Theorie Spectrale et Geometrie, Vol. 19, Annee 2000{2001, volume 19 of Semin. Theor. Spectr. Geom., pages 123{164. Univ. Grenoble I, 2001.

[Ste93] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

[VS04] Jean Van Schaftingen. Estimates for L1-vector elds. C. R. Math. Acad. Sci. Paris, 339(3):181{186, 2004.

[VSCC92] Nicholas Th. Varopoulos, Laurent Salo-Coste, and Thierry Coulhon. Analysis and geometry on groups, volume 100 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1992.

Downloads

Published

2013-12-29

How to Cite

Baldi, A. (2013). Lanzani-Stein inequalities in Heisenberg groups. Bruno Pini Mathematical Analysis Seminar, 4(1), 56–75. https://doi.org/10.6092/issn.2240-2829/4153

Issue

Section

Articles