Minimal connections: the classical Steiner problem and generalizations

Emanuele Paolini


The classical Steiner problem is the problem of nding the shortest graph connecting a given finite set of points. In this seminar we review the classical problem and introduce a new, generalized formulation, which extends the original one to infinite sets in metric spaces.


Steiner problem; minimal connections

Full Text:

PDF (English)


[aMK34] V. Jarnk and M. Kossler. O minimalnch grafech, obsahujcch n danych bodu. Casopis propestovanmatematiky a fysiky, 063(8):223{235, 1934.

[CR41] R. Courant and Robbins. What Is Mathematics? Oxford Univ. Press, 1941.

[DHW87] Ding-Zhu Du, Frank K. Hwang, and J. F. Weng. Steiner minimal trees for regular polygons. Discrete & Computational Geometry, 2:65{84, 1987.

[FKH92] P. Winter F. K. Hwang, D. S. Richards. The Steiner tree problem. Elsevier Science Publisher B.V., 1992.

[IT94] A. O. Ivanov and A. A. Tuzhilin. Minimal networks: the Steiner problem and its generalizations. CRC Press, 1994.

[PS12] Emanuele Paolini and Eugene Stepanov. Existence and regularity results for the steiner problem. Calc. Var. Partial Di. Equations, 2012.

DOI: 10.6092/issn.2240-2829/3421


  • There are currently no refbacks.

Copyright (c) 2012 Emanuele Paolini

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.