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Abstract. In this seminar we illustrate some results of maximal regularity for the

Cauchy-Dirichlet mixed problem, with a fractional time derivative of Caputo type in

spaces of continuous and Hölder continuous functions.

Sunto. In questo seminario presentiamo alcuni risultati di regolarità massimale per il

problema misto di Cauchy-Dirichlet, con una derivata temporale frazionaria di Caputo,

in spazi di funzioni continue e hölderiane.
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Let us consider the following classical Cauchy-Dirichlet mixed parabolic problem:

(1)



Dtu(t, x) = A(x,Dx)u(t, x) + f(t, x), t ∈ [0, T ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

u(0, x) = u0(x), x ∈ Ω.
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Here A(x,Dx) is a linear elliptic partial differential operator of second order, in the

bounded domain Ω of Rn. Suppose, for example, that

A(x,Dx) =
∑
|ρ|≤2

aρ(x)Dρ
x,

with aρ : Ω→ R,

(2)
∑
|ρ|=2

aρ(x)ξρ ≥ ν|ξ|2,

for some ν positive, independent of x in Ω and ξ in Rn.

Then several theorems of maximal regularity for (1) are known in mathematical lit-

erature. A theorem of maximal regularity is a statement establishing the existence of a

linear and topological isomorphism between a certain class of data (in this case a certain

class of triples (f, g, u0)) and a certain class of solutions u. Apart its intrinsic interest,

maximal regularity is very helpful to treat certain nonlinear problems as perturbations of

linear ones.

We are going to recall one of the most classical results of this type for (1). We begin

with some well known definitions.

If β ∈ N0 and Ω is an open, bounded subset of Rn, we shall indicate with Cβ(Ω) the class

of complex valued functions which are continuous in Ω, together with their derivatives

(extensible by continuity to Ω) of order not exceeding β. If β ∈ R+\N, Cβ(Ω) will indicate

the class of functions in C [β](Ω) whose derivatives of order [β] are Hölder continuous of

order β − [β] in Ω. These definitions admit natural extensions to functions with values

in a Banach space X. In this case, we shall use the notation Cβ(Ω;X) (in particular

Cβ([a, b];X), in case Ω = (a, b) ⊆ R). By local charts, if ∂Ω is sufficiently regular, we can

consider the spaces Cβ(∂Ω). All these classes will be assumed to be equipped of natural

norms. We shall use the notation

Cβ
0 (Ω) := {f ∈ Cβ(Ω) : γf = f|∂Ω = 0}.

If α, β ∈ [0,∞), T ∈ R+ and Ω is an open bounded subset of Rn, we set

Cα,β([0, T ]× Ω) := Cα([0, T ];C(Ω)) ∩B([0, T ];Cβ(Ω)).
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B([0, T ];Cβ(Ω)) indicates the class of bounded functions with values in Cβ(Ω). An anal-

ogous meaning will have Cα,β([0, T ] × ∂Ω). If X is a Banach space, Lip([0, T ];X) will

indicate the class of Lipschitz continuous functions from [0, T ] to X, equipped with a

natural norm.

Then the following maximal regularity theorem is well known (see [8]):

Theorem 1. Consider problem (1), with the following conditions:

(α1) Ω is an open, bounded subset in Rn lying on one side of its boundary ∂Ω, which

is a n− 1−submanifold of Rn of class C2+θ, with θ ∈ (0, 2) \ {1}.

(α2) A(x,Dx) is strongly elliptic, in the sense of (2), with coefficients aρ of class Cθ(Ω).

Then the following conditions on f, g, u0 are necessary and sufficient in order that there

exists a unique solution u in the class C1+ θ
2
,2+θ([0, T ]× Ω):

(I) f ∈ C θ
2
,θ([0, T ]× Ω);

(II) u0 ∈ C2+θ(Ω);

(III) g ∈ C1+ θ
2
,2+θ([0, T ]× ∂Ω):

(IV) u0(x′) = g(0, x′) ∀x′ ∈ ∂Ω;

(V) A(x′, Dx)u0(x′) + f(0, x′) = Dtg(0, x′) ∀x′ ∈ ∂Ω.

Another maximal regularity theorem we are considering is the following (for a proof,

see [3]) :

Theorem 2. Consider problem (1), with the conditions (α1)-(α2). Let θ ∈ (0, 2) \ {1}.

Then the following conditions on f, g, u0 are necessary and sufficient in order that there

exists a unique solution u such that u ∈ C1,2([0, T ] × Ω) with Dtu ∈ B([0, T ];Cθ(Ω)),

u ∈ B([0, T ];C2+θ(Ω)):

(I) f ∈ C([0, T ];C(Ω)) ∩B([0, T ];Cθ(Ω));

(II) u0 ∈ C2+θ(Ω);

(III) g ∈ C1,2([0, T ]× ∂Ω), Dtg ∈ B([0, T ];Cθ(∂Ω)), g ∈ B([0, T ];C2+θ(∂Ω));

(IV) u0(x′) = g(0, x′) ∀x′ ∈ ∂Ω;

(V) f|[0,T ]×∂Ω −Dtg ∈ C
θ
2 ([0, T ];C(∂Ω));

(VI) A(x′, Dx)u0(x′) + f(0, x′) = Dtg(0, x′) ∀x′ ∈ ∂Ω.
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Remark 1. Among the assumptions of Theorem 2, the least obvious is (V). The necessity

of it can be seen in the following way: if Dtu is bounded with values in Cθ(Ω), then u is

Lipschitz continuous with values in Cθ(Ω). If u ∈ C2+θ(Ω),

‖u‖C2(Ω) ≤ C‖u‖θ/2
Cθ(Ω)

‖u‖1−θ/2
C2+θ(Ω)

for some C positive independent of u. We deduce that if Dtu ∈ B([0, T ];Cθ(Ω)) and u ∈

B([0, T ];C2+θ(Ω)), then u ∈ Cθ/2([0, T ];C2(Ω)), so that A(·, Dx)u ∈ Cθ/2([0, T ];C(Ω))

and

f|[0,T ]×∂Ω −Dtg = A(·, Dx)u|[0,T ]×∂Ω ∈ Cθ/2([0, T ];C(∂Ω)).

Now we introduce the notion of fractional derivative in the sense of Caputo. Let X be

a complex Banach space. We introduce the following operator BX :

(3)


D(BX) := {u ∈ C1([0, T ];X) : u(0) = 0},

BXu(t) = u′(t).

Then it is easy to see that ρ(BX) = C. Moreover, ∀λ ∈ C, ∀f ∈ C([0, T ];X),

(4) (λ−BX)−1f(t) = −
∫ t

0

eλ(t−s)f(s)ds.

BX is positive of type π
2

in the sense of the following

Definition 1. Let X be a complex Banach space and let B : D(B) ⊆ X → X be a linear

(unbounded) operator. We shall say that it is positive of type ω ∈ (0, π) if

{λ ∈ C \ {0} : |Arg(λ)| > ω} ∪ {0} ⊆ ρ(B)

and for every ω′ ∈ (ω, π) there exists M(ω′) > 0 such that ‖(1 + |µ|)(µ − B)−1‖L(X) ≤

M(ω′) in case |Arg(µ)| ≥ ω′.

ρ(B) stands for the resolvent set of B.

Let B be a positive operator in X. Suppose that it is of type ω, for some ω ∈ (0, π).

We fix θ in (ω, π) and R in R+ such that {µ ∈ C : |µ| ≤ R} ⊆ ρ(B). Then, if α > 0 (so

that −α < 0), we set

(5) B−α := − 1

2πi

∫
γ(θ,R)

λ−α(λ−B)−1dλ.
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with γ(θ, R) piecewise C1 path, describing

{λ ∈ C : |λ| ≥ R, |Arg(λ)| = θ} ∪ {λ ∈ C : |λ| = R, |Arg(λ)| ≤ θ}.

This definition is clearly inspired by the elementary case of B real positive number.

The complex integral is convergent in the Banach space L(X). The following facts can

be checked (see, for example, [10]):

(a) (5) is consistent with the usual definition of B−α in case α ∈ N;

(b) if α, β ∈ R+, B−αB−β = B−(α+β);

(c) ∀α in R+ B−α is injective;

(d) in case B is positive and self-adjoint in the Hilbert space X, (2) is equivalent with

the definition of fractional power obtained employing the spectral resolution.

So we can define, for α ∈ R+,

(6) Bα := (B−α)−1.

Of course, the domain D(Bα) of Bα is the range of B−α. We observe, that, if B is

unbounded and β ∈ R, Bβ is bounded only if β ≤ 0. Moreover, employing (a)-(c), it is

easy to show that, if 0 < α < β, D(Bβ) ⊆ D(Bα),

D(Bβ) = {x ∈ D(Bα) : Bαx ∈ D(Bβ−α)}

and, if x ∈ D(Bβ),

Bβx = Bβ−αBαx.

For example, in the case of BX defined in (3) we have, for any positive α,

B−αX f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

For a proof, see [4].

Now we are able to define the fractional time derivative in the sense of Caputo Dα
Xu in

case α ∈ R+ \ N. Let m < α < m+ 1, with m ∈ N0. If u ∈ Cm+1([0, T ];X), we set

Dα
Xu(t) := B

α−(m+1)
X (Dm+1u)(t) = 1

Γ(m+1−α)

∫ t
0
(t− s)m−αDm+1u(s)ds.

We observe that

Dm+1u = Dm+1[u−
m∑
k=0

tk

k!
Dku(0)]
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and that, if u ∈ Cm+1([0, T ];X), u−
∑m

k=0
tk

k!
u(k)(0) ∈ D(Bm+1

X ). So

Dα
Xu = B

α−(m+1)
X Bm+1

X [u−
m∑
k=0

tk

k!
u(k)(0)] = Bα

X [u−
m∑
k=0

tk

k!
u(k)(0)].

as u−
∑m

k=0
tk

k!
u(k)(0) ∈ D(Bm+1

X ). This suggests the following

Definition 2. Let α ∈ R+ \ N, m < α < m + 1, with m ∈ N0. We shall say that

u ∈ D(Dα
X) if u ∈ Cm([0, T ];X) and u−

∑m
k=0

tk

k!
u(k)(0) ∈ D(Bα). In this case, we set

Dα
Xu := Bα

X(u−
m∑
k=0

tk

k!
u(k)(0)).

In case α ∈ N, we set

D(Dα
X) = Cα([0, T ];X),

Dα
Xu := Bα

X(u−
m∑
k=0

tk

k!
u(k)(0)) = Dα

t u.

Now we consider the following generalization of (1):

(7)



Dα
C(Ω)

u(t, x) = A(x,Dx)u(t, x) + f(t, x), t ∈ [0, T ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t u(0, x) = uk(x), k ∈ N0, k < α, x ∈ Ω.

We introduce the following definition of strict solution of (7):

Definition 3. Let f ∈ C([0, T ] × Ω) = C([0, T ];C(Ω)), uk ∈ C(∂Ω) for each k ∈ N0,

k < α. A strict solution u of (7) is an element of D(Dα
C(Ω)

) ∩ C([0, T ];C2(Ω)), such that

all the conditions in (7) are satisfied pointwise.

We begin by stating the following extension of Theorem 2:

Theorem 3. Suppose that the following assumptions are fulfilled:

(A1) Ω is an open, bounded subset in Rn lying on one side of its boundary ∂Ω, which

is a n− 1−submanifold of Rn of class C2+θ, with θ ∈ (0, 2) \ {1}.
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(A2) α ∈ (0, 2), A(x,Dx) =
∑
|ρ|≤2 aρ(x)Dρ

x, with aρ ∈ Cθ(Ω), aρ complex valued;

A(x,Dx) is assumed to be elliptic, in the sense that
∑
|ρ|=2 aρ(x)ξρ 6= 0 ∀ξ ∈ Rn \ {0}; we

suppose, moreover, that

|Arg(
∑
|ρ|=2

aρ(x)ξα)| < (1− α

2
)π, ∀x ∈ Ω, ∀ξ ∈ Rn \ {0}.

(A3) αθ < 2.

Then the following conditions are necessary and sufficient, in order that (7) has a

unique strict solution u such that Dα
C(Ω)

u belongs to B([0, T ];Cθ(Ω)) and u belongs to

B([0, T ];C2+θ(Ω)):

(I) f ∈ C([0, T ];C(Ω)) ∩B([0, T ];Cθ(Ω)).

(II) u0 ∈ C2+θ(Ω) and, in case α ∈ (1, 2), u1 ∈ Cθ+2(1− 1
α

)(Ω).

(III) g ∈ C([0, T ];C2(∂Ω))∩B([0, T ];C2+θ(∂Ω)), Dα
C(∂Ω)g exists and belongs to C([0, T ];

C(∂Ω)) ∩B([0, T ];Cθ(∂Ω));

(IV) u0|∂Ω = g(0) and, in case α ∈ (1, 2), u1|∂Ω = Dtg(0)

(V) f|[0,T ]×∂Ω − Dα
C(∂Ω)g ∈ C

αθ
2 ([0, T ];C(∂Ω)).

(VI) (A(·, Dx)u0 + f(0))|∂Ω = Dα
C(∂Ω)g(0).

The following theorem is an extension of Theorem 1:

Theorem 4. Suppose that (α1) − (α2) in the statement of Theorem 3 are fulfilled. Let

α, θ ∈ (0, 2), θ 6= 1, αθ < 2. Then the following conditions are necessary and sufficient,

in order that (1) has a unique solution u in C([0, T ];C2(Ω)) ∩ B([0, T ];C2+θ(Ω)), such

that Dα
C(Ω)

u exists and Dα
C(Ω)

u and A(·, Dx)u belong to C
αθ
2
,θ([0, T ]× Ω):

(I) f ∈ C αθ
2
,θ([0, T ]× Ω).

(II) u0 ∈ C2+θ(Ω) and, in case α ∈ (1, 2), u1 ∈ Cθ+2(1− 1
α

)(Ω).

(III) g ∈ C([0, T ];C2(∂Ω))∩B([0, T ];C2+θ(∂Ω)), Dα
C(∂Ω)g exists and belongs to C

αθ
2
,θ([0,

T ]× ∂Ω);

(IV) u0|∂Ω = g(0) and, in case α ∈ (1, 2), u1|∂Ω = Dtg(0).

(V) (A(·, Dx)u0 + f(0))|∂Ω = Dα
C(∂Ω)g(0).
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Complete proofs of Theorems 3 and 4 are given in [6]. For simplicity, we are going to

sketch a proof of Theorem 4 in the particular case g ≡ 0. We shall employ Theorem 2,

together with the following abstract result of maximal regularity (see [1], [2], [5] ):

Theorem 5. Let α ∈ (0, 2). Let X be a complex Banach space, A a (usually) unbounded

linear operator in X, such that, for some λ0 ∈ R, λ0 − A is positive of type ω less than

π(1− α
2
). Consider the abstract problem

(8)


Dα
Xu(t) = Au(t) + f(t), t ∈ [0, T ],

Dk
t u(0) = uk, k ∈ N0, k < α.

Let β ∈ (0,min{1, α}). Then the following conditions are necessary and sufficient in order

that (8) has a unique strict solution u, with Dα
Xu and Au belonging to Cβ([0, T ];X):

(a) f ∈ Cβ([0, T ];X);

(b) u0 ∈ D(A);

(c) Au0 + f(0) ∈ (X,D(A))β/α,∞;

(d) if α > 1, u1 ∈ (X,D(A))1− 1−β
α
,∞.

Here (X,D(A))θ,∞ stands for the real interpolation space with these parameters. We

shall employ Theorem 5 in the following situation: we suppose that the conditions on Ω

and A(x,Dx) in the statement of Theorem 1 are fulfilled and set

(9) X = C(Ω),

(10)


D(A) = {u ∈ ∩1≤p<∞(W 2,p(Ω) ∩W 1,p

0 (Ω)) : A(·, Dx)u ∈ C(Ω)},

Au(x) = A(x,Dx)u.

A satisfies the assumptions of Theorem 5 (see [3]). Moreover, if θ ∈ (0, 1) \ {1
2
}, we have

(11) (C(Ω), D(A))θ,∞ = {f ∈ C2θ(Ω) : f|∂Ω = 0}.

See for this [3]. So from Theorem 5 we obtain:
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Corollary 1. Consider problem (7). Let α ∈ (0, 2) and suppose that g ≡ 0. Let β ∈

(0,min{1, α}) \ {α
2
, 1− α

2
}.Then the following conditions are necessary and sufficient, in

order that there exits a unique solution u such that Dα
C(Ω)

u and A(x,Dx)u belonging to

Cβ([0, T ];X) : C(Ω)):

(I) f ∈ Cβ([0, T ];C(Ω));

(b) u0 ∈ D(A);

(c) A(x,Dx)u0 + f(0) ∈ C 2β
α (Ω), (A(·, Dx)u0 + f(0))|∂Ω = 0;

(d) if α > 1, u1 ∈ C2(1− 1−β
α

)(Ω), u1|∂Ω = 0.

We deduce the following particular case of Theorem 4:

Proposition 1. Suppose that the assumptions on Ω and A(x,Dx) in the statement of

Theorem 3 are fulfilled. Let α, θ ∈ (0, 2), θ 6= 1, αθ < 2. Then the following conditions

are necessary and sufficient, in order that (1), with g ≡ 0, has a unique solution u in

C([0, T ];C2(Ω)) ∩ B([0, T ];C2+θ(Ω)), such that Dα
C(Ω)

u exists and Dα
C(Ω)

u and A(·, Dx)u

belong to C
αθ
2
,θ([0, T ]× Ω):

(I) f ∈ C αθ
2
,θ([0, T ]× Ω).

(II) u0 ∈ C2+θ(Ω) and, in case α ∈ (1, 2), u1 ∈ Cθ+2(1− 1
α

)(Ω).

(III) u0|∂Ω = 0 and, in case α ∈ (1, 2), u1|∂Ω = 0.

(IV) (A(·, Dx)u0 + f(0))|∂Ω = 0.

Proof. It follows immediately from Theorem 3 and Corollary 1, taking β = αθ
2

. �

Remark 2. In case α = 1, the assumptions of Theorem 4 imply that u belongs to

C1+ θ
2 ([0, T ];C(Ω)), so that u belongs to C1+ θ

2
,2+θ([0, T ] × Ω). This suggest that in the

general case u should belong to Cα+αθ
2
,2+θ([0, T ]× Ω). This does not happen, as, in case

α 6= 1, u does not necessarily belong to any space Cα+ε([0, T ];C(Ω)) for any ε positive.

Consider the following example: let α ∈ (0, 2)\{1}. Fix f0 in C2+θ
0 (Ω)\{0}, θ ∈ (0, 2)\{1},
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and define 
u : [0, T ]× Ω→ C,

u(t, x) = tα

Γ(α+1)
f0(x).

Then u solves (1), if we take f(t, x) = f0(x)− tα

Γ(α+1)
[A(·, Dx)f0](x), g ≡ 0, Dk

t u(0, ·) = 0

if k ∈ N0, k < α. It is easily seen that in this case the assumptions (I)-(V) of Theorem

4 are satisfied. However, u does not belong to any space Cα+ε([0, T ];C(Ω)), for any ε

positive.

Nevertheless, let v ∈ D(Bα
X) be such that Bα

Xv ∈ Cβ([0, T ];X), with α+β, β ∈ R+ \N.

Then v can be represented in the form

v(t) =
∑

k∈N0,k<[β]

tk+αvk + w(t),

with vk ∈ X for each k, w ∈ Cα+β([0, T ];X), w(j)(0) = 0, for each j in N0, j < α + β

(see [5], Proposition 12 or [7], again Proposition 12). We deduce that in the situation of

Theorem 4, at least in case α(1 + θ
2
) 6∈ N0, the solution u can be written in the form

u(t) = U(t) + tαv0,

with v0 ∈ C(Ω), U ∈ Cα+αθ
2 ([0, T ];C(Ω)).
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