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Abstract. In this survey, we present some recent results on the problem about the

regularity of length-minimizing curves in sub-Riemannian geometry. We also sketch the

possible application of some ideas coming from Geometric Measure Theory.
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1. Statement of the problem

Let M be a smooth manifold and D ⊂ TM a distribution on M locally given by

a system of vector-fields satisfying the Hörmander condition, D = span{X1, . . . , Xr}.

The number r = rankD ≥ 2 is the rank of D . On D there is a fixed positive qua-

dratic form that measures the speed of curves with tangent in D , the so-called horizontal

curves. We can choose the one making X1, . . . , Xr orthonormal. Let d be the induced

Carnot-Carathéodory distance on M . This distance is often called control metric by the

Bologna’s school, because it controls the regularity of partial differential operators built

upon Hörmander vector-fields.
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Proposition 1.1. If the metric space (M,d) is connected, complete and locally compact

then each pair of points in M is connected by (at least) one length minimizing curve γ (a

“geodesic”).

The a priori regularity of a geodesic γ is the Lipschitz regularity because the existence

is proved by applying Ascoli-Arzelà’s theorem in the class of rectifiable curves. The main

and basic open problem is the following.

Question. Is any geodesic γ of class C1 after arc-length parameterization? Or even

better of class C∞?

The problem is difficult and interesting because of the presence of abnormal extremals,

also known as singular extremals. These are the critical points of the end-point mapping,

i.e., curves where the differential of the end-point mapping is not surjective.

In the analytic case, i.e., analytic manifold and vector fields, Sussmann proved that

length minimizers are smooth on a dense open set of times [Sus15]. However, it is not yet

clear how to show that this set has full measure.

If (nontriavial) strictly singular curves do not appear, then all geodesics are of class

C∞. This is the case of a distribution D that satisfies the Hörmander condition with

step 2. Also, for a generic distribution of rank r ≥ 3 there are no abnormal curves, as

shown in [CJT06]. However, there are examples of singular curves that are indeed length

minimizing, as first observed in [Mon94]. All such known examples are of class C∞. In

particular, the important class of regular abnormal extremals are always smooth and also

locally length-minimizing [LS95].

The situation is in general complicated by the following example, that was discovered

using the algebraic theory of [LDLMV13] and [LDLMV18].

Proposition 1.2. There is a sub-Riemannian structure (M,D), with M = Rn a Carnot

group, such that for any function φ ∈ Lip([0, 1]) the curve

γ(t) = (t, φ(t), ∗, . . . , ∗), ∗ = suitable, t ∈ [0, 1],
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1) satisfies the first order necessary optimality conditions of the Pontryagin Maximum

Principle;

2) it satisfies the second order necessary condition of Control Theory known as Goh

condition.

This means that with a differential analysis up to the second order it is not possible to

answer the regularity question with full generality.

2. Existence of tangent lines at every point

We recently proved in [MPV18a] that any geodesic is differentiable at any point for

a suitable infinitesimal sequence of scales. This is proved by a blow-up analysis and

cut-and-adjust technique that we are going to describe in this section.

After choosing exponential coordinates of first kind at the point x0 ∈ spt(γ), we can

assume that M = Rn and that x0 = 0 ∈ Rn.

The stratification of bundles at x0 = 0 induced by D determines suitable weights wi ∈ N

associated to the “degree” of the ith coordinate. Then we have the following dilations

adapted to the stratification:

δλ(x) = (λw1x1, . . . , λ
wnxn), λ > 0.

In each vector field Xj we can isolate the leading δλ-homogeneous part and define trun-

cated vector fields X∞j . So we have a limit distribution D∞ = span{X∞1 , . . . , X∞r } and a

limit manifold M∞ = Rn. We call (M∞,D∞) the tangent sub-Riemannian structure to

(M,D).

Let γ : [−1, 1]→ Rn be a D-horizontal curve with γ(0) = 0.

Definition 2.3. The tangent cone Tan(γ; 0) is the set of all D∞-horizontal curves κ :

R→M∞ such that there is an infinitesimal sequence ηi ↓ 0 satisfying

lim
i→∞

δ1/ηiγ(ηit) = κ(t), t ∈ R,

with locally uniform convergence.

Theorem 2.4. Let γ be a length-minimizing curve in (M,D). Then Tan(γ;x) contains

a line, for any interior point x ∈ spt(γ).



140 ROBERTO MONTI

This theorem is proved in [MPV18a]. We give a sketch of the proof in the next section.

In the recent work [HLD18], the authors prove the same result with a slightly different

approach and also obtain other results using a blow-down technique.

Proving that Tan(γ;x) = {1 line}, i.e., that the tangent cone consists precisely of one

line, would mean that γ is differentiable at x. We are not yet able to do this. And

this is not yet the C1 regularity. The higher regularity seems even more difficult. Some

C1,α-regularity results for length minimizers are obtained in [Mon14].

As a corollary of Theorem 2.4, we obtain the following result originally proved by

Leonardi-Monti [LM08] with some restrictions and by Le Donne-Hakavuori [HLD16] in

full generality. The technical step of reducing to problem from a general manifold to a

Carnot group is detailed in [MPV18b].

Theorem 2.5. Let γ be length-minimizing in (M,D). Then γ does not have corner-like

singularities.

In fact, if x is a corner point then Tan(γ;x) consists of one curve that is a corner (and

not a line). A nice application of this theorem has recently appeared in [BCJ+18].

Theorem 2.6. In rank r = 2 and step s ≤ 4 length minimizing curves are of class C1.

After a careful analysis of the conditions for an abnormal extremal, the authors show

that it can have only isolated singularities of corner-type, which are not compatible with

minimality.

Example 2.7. A limit of Theorem 2.4 is shown by the following example. Consider the

planar double-logarithmic spiral

γ(t) = tei log(− log |t|), 0 < |t| ≤ 1/2

with γ(0) = 0.

In this case we have Tan(γ; 0) = {all lines through 0}. The spiral γ has finite length

and moreover it may appear as (part of the coordinates of) an extremal curve in some

sub-Riemannian manifold. The information given by Theorem 2.4 is empty and the
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techniques used in its proof do not seem sufficient to show that this spiral cannot be

length-minimizing.

3. Sketch of the proof of Theorem 2.4

The goal is to find a line in the tangent cone. The first two step in the argument are

the following:

Step 1. If γ̄ ∈ Tan(γ; 0) and ¯̄γ ∈ Tan(γ̄; 0) then ¯̄γ ∈ Tan(γ; 0).

Step 2. If γ is length minimizing and γ̄ ∈ Tan(γ; 0)) then γ̄ is length minimizing in

the limit structure.

For these reasons, we can without loss of generality assume that M = G = Rn is a

nilpotent stratified Lie group (Carnot group). The Lie algebra of G has the stratification

g = V1 ⊕ V2 ⊕ . . .⊕ Vs, s := step,

where D = V1 is the first layer, i.e., the generating layer. On V1 there is a fixed left-

invariant scalar product.

Let γ : [−1, 1]→ G = Rn be a horizontal curve parameterized by arc length and with

γ(0) = 0.

Definition 3.8. The excess of γ on the interval [−η, η] is

Exc(γ; [−η, η]) = inf
v∈V1,|v|=1

( 1

2η

∫ η

−η
〈γ̇(t), v〉2dt

)1/2
.
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Here are some elementary considerations:

1) If Exc(γ; [−η, η]) = 0 then γ̇ is contained in a proper subspace of V1, and thus γ

is contained in a proper subgroup of G.

2) When r = dim(V1) = 2 and Exc(γ; [−η, η]) = 0 then γ is a line.

3) The previous statements also hold in the infinitesimal version. For instance, if

Exc(γ; [−η, η]) → 0 and the blow-up of γ is converging to some curve, then this

curve is contained in a proper subgroup of G.

For these reasons, Theorem 2.4 is a consequence of the following new claim, by an iteration

argument.

Theorem 3.9. Let γ be length minimizing. Then there exists an infinitesimal sequence

ηi → 0 such that

lim
i→∞

Exc(γ; [−ηi, ηi]) = 0.

The proof goes by contradiction. Assume there exists an ε > 0 such that for all η > 0

we have:

(∗) E := Exc(γ; [−η, η]) ≥ ε.

Condition (∗) has two consequences.

1) Let γ̂ be the curve obtained from γ replacing γ|[−η,η] with a line segment and then

lifting to a horizontal curve. Then we have length(γ)− length(γ̂) ≥ ηE2 ≥ ηε2. However,

there is a final error γ̂(1)− γ(1) 6= 0.

2) There exist r subintervals [a1, b1], . . . , [ar, br] ⊆ [−η, η], with ai < bi ≤ ai+1, such that

(∗∗) | det(γ̃(b1)− γ̃(a1), . . . , γ̃(br)− γ̃(ar))| ≥ c(ε)ηr,
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where γ̃ ∈ Rr are the “horizontal coordinates”.

On each [ai, bi] and for suitable Vi ∈ g we construct a “correction device” as in the

picture below:

If the displacement V = Vi is short then the device is “cheap”, i.e., the error can be

corrected adding a small amount of length.

Proposition 3.10. There are “devices” correcting the final error γ̂(1)− γ(1) adding an

amount of length o(η).

This proposition ends the proof of Theorem 3.9, because we were able to construct a

curve shorter than γ and joining the same initial and final points. Condition (∗∗) controls

the constants in solving a certain linear system.

4. Height-estimate and Lipschitz graphs along X1

By Theorem 3.9 we know that, at some suitable infinitesimal scale, the excess is van-

ishing. For this reason it is important to understand the consequences of the small-excess

regime. In this section we describe some results in this direction proved in the master

thesis [Zac18].

Let G = Rn be a free Carnot group with vector fields

X1 =
∂

∂x1
and Xj =

∂

∂xj
+

n∑
k=j+1

pjk(x)
∂

∂xk
, j = 2, . . . , r,



144 ROBERTO MONTI

where r is the rank and pjk are suitable polynomials, namely the polynomial given by the

Hall basis theorem.

Consider a horizontal curve γ : [−1, 1]→ Rn with γ(0) = 0.

Definition 4.11. The directional excess of γ along X1 at scale % > 0 is

E(γ; 0; %;X1) =

∫
spt(γ)∩B%(0)

|γ̇ −X1|2dH 1,

where H 1 is the natural length measure and B%(0) is a ball in the sub-Riemannian

distance.

In Geometric Measure Theory, minimal surfaces satisfy the so-called “Height-estimate”.

In our setting we have the following result:

Theorem 4.12. Let γ be a length-minimizer parameterized by arc-length with γ(0) = 0.

There exist integers αi, βi such that:

1) αi + βi = wi =weight of the ith coordinate of Rn.

2) For 0 < |t| ≤ % and i ≥ 2( |γi(t)|
|t|αi

) 1
βi+1 ≤ 2%

√
E(γ; 0; %;X1).

This means that in the small-excess regime, the curve is contained in a thin tube

around X1. The proof is by induction on the coordinates xi. The numbers αi and βi are

determined by the polynomials pjk given by the Hall basis theorem.

Theorem 4.13. Let γ : [−1, 1]→ Rn be a length minimizer parameterized by arc-length,

with γ(0) = 0. For any ε > 0 there exist a set I ⊂ [−1/4, 1/4] and a curve γ̄ : I → Rn

such that:

i) spt(γ̄) ⊂ spt(γ);

ii) γ̄1(t) = t for t ∈ I, i.e., γ̄ is a graph along X1;

iii) for i ≥ 2 and s, t ∈ I

|(γ̄(s)−1 · γ̄(t))i|1/wi ≤ ε|t− s|

iv) H 1
(
B1/4 ∩ spt(γ) \ spt(γ̄)

)
≤ CεE(γ; 0; 1;X1).
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Above, the dot · is the group law. Statement iii) means that γ̄ is a “Lipschitz-graph”

along X1 for the Carnot-Carathéodory metric, with Lipschitz constant ε.

The proof of Theorem 4.13 goes as follows. For fixed η > 0 consider the set

Γ =
{
x ∈ spt(γ) ∩B1/4 : E(γ;x, r;X1) ≤ η for 0 < r ≤ 1/2

}
.

Take points x, y ∈ Γ and let λ = d(x, y). The curve γλ = δ1/λ(y
−1·γ) is still length-

minimizing and 0 ∈ spt(γλ). We apply the height-estimate to the point z = δ1/λ(y
−1 ·x) ∈

spt(γλ). Choosing η > 0 small compared to ε we discover that the points x and y are on

an ε-Lipschitz graph.

In the regularity theory of minimal surfaces, the Lipschitz-graph approximation is

the first step towards the “harmonic approximation”. This approximation permits to

“transfer” the regularity of harmonic functions to minimal surfaces. In the case of a

sub-Riemannian length minimizing curve, it is not clear what regularity could provide a

similar “harmonic approximation”.
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