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ABSTRACT. In this note we present Pohozaev-type identities that have been recently established

in [4] in the framework of half-harmonic maps defined either on R or on the sphere S1 with

values into a closed manifold Nn ⊂ Rm. Weak half-harmonic maps are critical points of the

following nonlocal energy

(1) L1/2
R (u) :=

∫
R
|(−∆)1/4u|2 dx or L1/2

S1 (u) :=

∫
S1

|(−∆)1/4u|2 dσ(z).

By using the invariance of (1) in 1-D with respect to the trace of the Möbius transformations we

derive a countable family of relations involving the Fourier coefficients of weak half-harmonic

maps u : S1 → Nn.We also present a short overview of Pohozaev formulas in 2-D in connection

with Noether’s theorem.

SUNTO. In questa nota presentiamo in maggior dettaglio alcune formule di tipo Pohozaev trovate

recentemente in [4] nell’ambito dello studio della mappe semi-armoniche definite o sulla retta

reale o su la sfera S1 e a valori in una varietà chiusa Nn ⊂ Rm. Le mappe semi-armoniche

sono punti critici del funzionale non locale (1). Usando l’invarianza del funzionale (1) in dimen-

sione 1 rispetto alla traccia delle trasformazioni di Möbius deriviamo una famiglia numerabile

di relazioni tra i coefficienti di Fourier delle mappe semi-armoniche u : S1 → Nn. Presentiamo

inoltre una breve panoramica sul legame tra formule di Pohozaev in 2-D e il teorema di Noether.
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1. INTRODUCTION

The notion of weak 1/2-harmonic maps u : Rk → N n, where N n ⊂ Rm is a smooth

n-dimensional closed (compact without boundary) manifold, has been introduced by Tristan

Rivière and the author in [7, 8]. Since then the theory of fractional harmonic maps has received
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a lot of attention in view of their application to important geometrical problems (see e.g [9] for

an overview of the theory). The L2-regularity theory has been extended to higher dimension

[3, 11, 18], and to Lp-energies [10, 16, 17].

In the sequel we focus our attention to the 1-D case (k = 1).

We first introduce some notations and definitions. We denote by πNn the orthogonal projec-

tion ontoN n which happens to be a C l map in a sufficiently small tubular neighborhood ofN n

if N n is assumed to be C l+1.

We define the homogeneous fractional Sobolev space Ḣ1/2(R,Rm) as follows

Ḣ1/2(R,Rm) :=

{
u ∈ L2

loc(R,Rm) : ‖u‖2
Ḣ1/2(R) :=

∫
R

∫
R

|u(x)− u(y)|2

|x− y|2
dx dy <∞

}
.

We also define

Ḣ1/2(R,N n) :=
{
u ∈ Ḣ1/2(R,Rm) ; u(x) ∈ N n for a.e. x ∈ R

}
.

We introduce the following nonlocal energy:

(2) L1/2(u) :=

∫
R
|(−∆)1/4u|2 dx

where for u ∈ S(R) (1) the fractional Laplacian (−∆)1/4u can be defined by means of the the

Fourier transform as follows
̂(−∆)1/4u(ξ) = |ξ|1/2û(ξ) .

(2)

We observe that if u ∈ Ḣ1/2(R,Rm), then (−∆)1/4u is well defined and lies in L2(R), (see

for instance Lemma B.5 in [6] and the references therein).

We now give the definition of a weak 1/2-harmonic map:

(1)We denote respectively by S(R) the space of (real or complex) Schwartz functions.
(2)Given a function ϕ ∈ S(R) we denote either by ϕ̂ or by Fϕ the Fourier transform of ϕ, i.e.

ϕ̂(ξ) = Fϕ(ξ) =

∫
R
v(x)e−iξx dx.
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Definition 1.1. A map u ∈ Ḣ1/2(R,N n) is called a weak 1/2-harmonic map intoN n if for any

φ ∈ Ḣ1/2(R,Rm) ∩ L∞(R,Rm) there holds

d

dt
L1/2(πNn(u+ tφ))|t=0 = 0. �

In short we say that a weak 1/2-harmonic map is a critical point of L1/2 in Ḣ1/2(R,N n) for

perturbations in the target.

Weak 1/2-harmonic maps satisfy the Euler-Lagrange equation

(3) ν(u) ∧ (−∆)1/2u = 0 in D′(R),

where ν(z) is the Gauss Map at z ∈ N n taking values into the Grassmannian G̃rm−n(Rm) of

oriented m − n planes in Rm which is given by the oriented normal m − n-plane to TzN n.

We denote by the symbol ∧ the exterior or wedge product defined on the exterior algebra (or

Grassmann Algebra) of Rm,
∧

(Rm).

Equation (3) says roughly speaking that the vector (−∆)1/2u(x) is perpendicular to the tan-

gent plane Tu(x)N n at the point u(x).

One of the main result in [8] is the local Hölder continuity of weak 1/2-harmonic maps:

Theorem 1.1. Let N n be a C2 closed submanifold of Rm and let u ∈ Ḣ1/2(R,N n) be a weak

1/2−harmonic map into N n. Then u ∈
⋂

0<δ<1C
0,δ
loc (R,N n). �

Finally a bootstrap argument leads to the following result (see [6] for the details of this

argument).

Theorem 1.2. Let N n ⊂ Rm be a C l closed submanifold of Rm , with l ≥ 2, and let u ∈

Ḣ1/2(R,N n) be a weak 1
2
-harmonic. Then

u ∈
⋂

0<δ<1

C l−1,δ
loc (R,N n).

In particular, if N n is C∞ then u ∈ C∞(R,N n). �
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Next we would like to clarify the connections between 1/2-harmonic maps defined in R and

1/2-harmonic maps defined in S1 which are defined as critical points of the energy

(4) L1/2

S1 (u) :=

∫
S1

|(−∆)1/4u|2 dσ(z).

For u ∈ L1(S1) we define its Fourier coefficients as

û(n) =
1

2π

∫ 2π

0

u(eiθ)e−inθ dσ(z), n ∈ Z.

If u is smooth we define for s ∈ R

(5) (−∆)su(θ) =
∑
n∈Z

|n|2sû(n)einθ.

If u ∈ L1(S1) we can define (−∆)su ∈ D′(S1) in a distributional sense as follows:

(6) 〈(−∆)su, ϕ〉 :=

∫
S1

u (−∆)sϕdσ(z), ϕ ∈ C∞(S1).

Notice that ϕ ∈ C∞(S1) implies that (−∆)sϕ ∈ C∞(S1) (here (−∆)sϕ is defined as in (5)).

We define in S1 the Sobolev space:

H1/2(S1,Rm) :=

{
u ∈ L2(S1,Rm) :

∫
S1

∫
S1

|u(eiθ)− u(eiτ )|2

|eiθ − eiτ |2
dθ dτ <∞

}
.

If u ∈ H1/2(S1,Rm) then∫
S1

∫
S1

|u(eiθ)− u(eiτ )|2

|eiθ − eiτ |2
dθ dτ = 4π

∑
k

|k||v̂(k)|2 < +∞.

We next consider the classical stereographic projection from S1 \ {−i} onto R:

(7) P−i : S1 \ {−i} → R, P−i(cos(θ) + i sin(θ)) =
cos(θ)

1 + sin(θ)
.

Its inverse is given by

(8) P−1−i (x) =
2x

1 + x2
+ i

(
−1 +

2

1 + x2

)
,

then the following relation between the 1/2-Laplacian in R and in S1 holds:
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Proposition 1.1. Given u : R → Rm, we set v := u ◦ P−i : S1 → Rm. Then u ∈ L 1
2
(R)(3) if

and only if v ∈ L1(S1). In this case

(9) (−∆)
1
2

S1v(eiθ) =
((−∆)

1
2
Ru)(P−i(eiθ))

1 + sin θ
in D′(S1 \ {−i}).

Observe that (1 + sin(θ))−1 = |P ′−i(θ)|, hence we have∫ 2π

0

(−∆)
1
2v(eiθ)ϕ(eiθ) dσ(z) =

∫
R
(−∆)

1
2u(x)ϕ(P−1−i (x)) dx for every ϕ ∈ C∞0 (S1\{−i}).

For the proof of Proposition 1.1 we refer for instance to [5].

A key property of the Lagrangian (2) is its invariance under the trace of conformal maps

that keep invariant the half space R2
+ (the Möebius group). From the conformal invariance

and Proposition 1.1 it follows that u ∈ Ḣ1/2(R) is a 1/2-harmonic map in R if and only if

v := u ◦ P−i ∈ H1/2(S1) is a 1/2 harmonic map in S1, (see i.e. [2]).

In this note we are going to describe some Pohozaev-type identities for the half Laplacian

and the Laplacian respectively in one and two dimension.

We first consider the fundamental solution G of the fractional heat equation:

(10)

 ∂tG+ (−∆)1/2G = 0 x ∈ R, t > 0

G(0, x) = δ0 t = 0 .

It is given by

G(t, x) =
1

π

t

x2 + t2
.

The following equalities hold

∂tG =
1

π

x2 − t2

(t2 + x2)2
, ∂xG = − 1

π

2xt

(t2 + x2)2
.

Theorem 1.3. [Pohozaev Identity in R] Let u ∈ W 1,2
loc (R,Rm) be such that

(11)
du

dx
· (−∆)1/2u = 0 a.e. in R.

(3)We recall that L 1
2
(R) :=

{
u ∈ L1

loc(R) :
∫
R
|u(x)|
1+x2 dx <∞

}
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Assume that for some u0 ∈ R

(12)
∫
R
|u− u0|dx < +∞,

∫
R

∣∣∣∣dudx(x)

∣∣∣∣ dx < +∞.

Then the following identity holds

(13)
∣∣∣∣∫

R
∂tG(t, x)(u(x)− u0)dx

∣∣∣∣2 =

∣∣∣∣∫
R
∂xG(t, x)(u(x)− u0)dx

∣∣∣∣2 for all t ∈ R. �

We get an analogous formula in S1. By identifying S1 with [−π, π) we consider the following

problem

(14)

 ∂tF + (−∆)1/2F = 0 θ ∈ [−π, π), t > 0

F (0, θ) = δ0(x) θ ∈ [−π, π].

The solution of (14) is given by

F (θ, t) =
1

2π

+∞∑
n=−∞

e−t|n|einθ =
e2t − 1

e2t − 2et cos(θ) + 1
.

In this case we have

∂tF (t, θ) = −2et
e2t cos(θ)− 2et + cos(θ)

(e2t − 2et cos(θ) + 1)2

and

∂θF (t, θ) = −2et
sin(θ)(e2t − 1)

(e2t − 2et cos(θ) + 1)2
.

Then the following holds

Theorem 1.4. [Pohozaev Identity on S1] Let u ∈ W 1,2(S1,Rm) be such that

(15)
∂u

∂θ
· (−∆)1/2u = 0 a.e. S1.

Then the following identity holds

(16)
∣∣∣∣∫
S1

u(z)∂tF (z) dσ(z)

∣∣∣∣2 =

∣∣∣∣∫
S1

u(z)∂θF (z) dσ(z)

∣∣∣∣2 .
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From (16) one deduces in particular (by letting t→ +∞) that

(17)
∣∣∣∣∫ 2π

0

u(eiθ) cos(θ) dθ

∣∣∣∣2 =

∣∣∣∣∫ 2π

0

u(eiθ) sin(θ) dθ

∣∣∣∣2 . �

For the proof of Theorem 1.3 and Theorem 1.4 and the derivation of the fundamental solution

of the nonlocal heat equation we refer the reader to [4].

We could have solved (10) by requiring G(0, x) = δx0 , with x0 ∈ R and we would have

obtained infinitely many corresponding Pohozaev-type formulas.

Next we explain the connection between 1/2-harmonic maps and the formulas (13) and (16).

We observe that if u is a smooth critical point of (2) in R then it is stationary as well, namely

it is critical with respect to the variation of the domain:

(18)
(
d

da

∫
R
|(−∆)1/4(u(x+ aX(x))|2dx

)∣∣
a=0

= 0

where X : R→ R is a C1
c (R) vector field.

Actually any variation the form u(x+ aX(x)) = u(x) + a
du(x)

dx
X(x) + o(a) can be inter-

preted as being a variation in the target with ϕ(x) =
du(x)

dx
X(x).

From (18) we get the so-called equation of stationarity:

0 =

∫
R
[(−∆)1/2(u(x+aX(x))· d

da
(u(x+aX(x)))]∣∣

a=0

dx =

∫
R
(−∆)1/2(u(x))·du(x)

dx
X(x)dx.

By the arbitrariness of X and the smoothness of u from (19) we deduce that

(19) (−∆)1/2u(x) · du
dx

(x) = 0 x ∈ R.

In an analogous way if u is a smooth critical point of the fractional energy (2) in S1, it also

satisfies

(20)
(
d

da

∫
S1

|(−∆)1/4(u(z + aX(z)))|2dσ(z)

)∣∣
a=0

= 0

where X : S1 → R2 is a C1(S1) vector field. From (20) it follows that

(21) (−∆)1/2(u(z)) · ∂θu(z) = 0 z ∈ S1.
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Therefore the assumptions of Theorem 1.3 and Theorem 1.4 are satisfied by sufficiently smooth

1/2-harmonic maps.

We recall that one can derive the stationary equation for a certain Lagrangian before knowing

any regularity assumption of the critical point. For instance if the critical point of is a local

minimizer then weak solutions of the Euler Lagrange equation satisfies the stationary equation

as well. On the other hand there are examples in which solutions of the Euler Lagrange equation

are not solution of the stationary equation, (see [13]).

We have now to give some explanations why these identities belong to the Pohozaev identities

family. These identities are produced by the conformal invariance of the highest order derivative

term in the Lagrangian from which the Euler Lagrange is issued. For instance the Dirichlet

energy

(22) L(u) =

∫
R2

|∇u|2dx2

is conformal invariant in 2-D. We recall that a map φ : R2 → R2 is conformal if it satisfies

(23)


|∂φ
∂x
| = |∂φ

∂y
|

〈∂φ
∂x
,
∂φ

∂y
〉 = 0

det∇φ ≥ 0 and ∇φ 6= 0 .

Then for every u ∈ W 1,2(R2,R) and every conformal map φ, deg(φ) = 1, the following

holds

L(u) = L(u ◦ φ) =

∫
φ−1(R2)

|∇(u ◦ φ)(x)|2dx2 .

Whereas the following fractional energy

(24) L1/2
R (u) =

∫
R
|(−∆)1/4u|2 dx

is conformal invariant in 1-D with respect to the trace of conformal maps that keep invariant R2
+.

The infinitesimal perturbations issued from the dilations produce in (22) and (24) respectively

the following infinitesimal variations of these highest order terms

2∑
i=1

xi
∂u

∂xi
·∆u in 2-D and x

du

dx
· (−∆)1/2u in 1-D
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Such kind of perturbations play an important role in establishing Pohozaev-type identities. We

will explain in more detail in section 2 the link between Pohozaev formulas and the conformal

invariance of some specific Lagrangians in 2-D. If u is a smooth critical point of (22) then it

satisfies the following stationary equation

(25)
2∑
i=1

∂u

∂xi
·∆u(x) = 0, x ∈ R2.

Integrating the identity (25) on a ball B(x0, r) (x0 ∈ R2, r > 0) gives a balancing law between

the radial part and the angular part of the energy classically known as Pohozaev identity.

Precesely it holds:(4)

Theorem 1.5. Let u ∈ W 2,2
loc (B(0, 1),Rm) such that

(26)
∂u

∂xi
(x) ·∆u(x) = 0 a.e. in B(0, 1)

for i = 1, 2. Then it holds

(27)
∫
∂B(x0,r)

∣∣∣∣1r ∂u∂θ
∣∣∣∣2 dθ =

∫
∂B(x0,r)

∣∣∣∣∂u∂r
∣∣∣∣2 dθ

for all r ∈ [0, 1].

In 1 dimension one might wonder what corresponds to the 2 dimensional dichotomy between

radial and angular parts. Figure 1 is intended to illustrate the following correspondence of

dichotomies respectively in 1 and 2 dimensions.

2-D ←→ 1-D

radial :
∂u

∂r
←→ symmetric part of u : u+(x) := u(x)+u(−x)

2

angular :
∂u

∂θ
←→ antisymmetric part of u : u−(x) := u(x)−u(−x)

2

In this note we make the observation that by exploiting the invariance of the equation (15) with

respect to the trace of Möbius transformations of the disk in R2 of the formMα,a(z) := eiα z−a
1−az ,

(4)In section 3 we will prove a more general version of Theorem 1.5.
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∫
∂B(0,r)∩R2

+

∂ũ

∂θ
dθ = (u(r)− u(0))− (u(−r)− u(0)) = (u − u(0))−(r)

∫
B(0,r)∩{y=0}

∂ũ

∂r
dr = u(r) + u(−r)− 2u(0) = (u − u(0))+(r)

0

FIGURE 1. Link between the symmetric and antisymmetric part of u and the
integral of the radial and tangential derivative of any extension ũ of u on upper
half plane R2

+

α ∈ R, a ∈ (−1, 1) (5) we can derive from (17) a countable family of relations involving the

Fourier coefficients of solutions of (15). This fact has been already announced in the paper

[4]. We heard that the proof of this property has been recently obtained also in the work of

preparation [1] by using a different approach.

Given u : S1 → Rm we define its Fourier coefficients for every k ≥ 0 :
ak :=

1

2π

∫ 2π

0

u(eiθ) cos kθ dθ

bk =
1

2π

∫ 2π

0

u(eiθ) sin kθ dθ.

The following result holds.

Proposition 1.2. [Relations of the Fourier coefficients on S1] Let u ∈ W 1,2(S1,Rm) satisfy

(15). Then for every n ≥ 2 it holds

(29)
n−1∑
k=1

(n− k)k(akan−k − bkbn−k) = 0

(5)We recall that since Mα,a(z) is conformal with M ′α,a(z) 6= 0 we have

(28) (−∆)1/2(u ◦Mα,a(z)) = eλα,a((−∆)1/2u) ◦Mα,a(z),

where λα,a(z) = log(|∂Mα,a

∂θ (z)|), z ∈ S1
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and

(30)
n−1∑
k=1

(n− k)k(akbn−k + bkan−k) = 0. �

We conclude this introduction by mentioning that in the paper [14] the authors obtains a

different Pohozaev identity for bounded weak solutions to the following problem

(31)

 (−∆)su = f(u) in Ω

u = 0 in Rn \ Ω

where s ∈ (0, 1) and Ω ⊂ Rn is a bounded domain. As a consequence of their Pohozaev

identity they get nonexistence results for problem (31) with supercritical nonlinearitis in star-

shaped domains.

This paper is organized as follows. In section 2 we present a short overview of the connection

between Pohozaev formulas in 2-D and the existence of conservation laws. In section 3 we

obtain infinite many Pohozaev formulas for stationary harmonic maps in 2-D in correspondence

to conformal vector fields in C generated by holomorphic functions.The strategy consistes in

multiplying the stationary equation associated to Dirichlet energy by a conformal vector field

and the fundamental solution. This method avoids to use suitable cut-off functions and it turns

out to be useful also in the nonlocal case to get formula 13. In section 4 we prove Proposition

1.2.

2. POHOZAEV IDENTITY IN THE LIGHT OF NOETHER THEOREM

In this section we would like to describe the relation between Pohozaev identities with

Noether’s theorem in 2-D. Noether’s theorem is a very general result in the calculus of varia-

tions. It enables to construct a divergence-free vector field on the domain space, from a solution

of a variational problem, provided we are in the presence of a continuous symmetry. Here we

will consider the case of symmetries in the domain and Lagrangians of the type:

(32) E(u) =

∫
B(0,1)

f(u,∇u)(x)dx
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where f ∈ C1(Rm,Rm × R2), |f(z, p)| ≤ C(1 + |p|2) and u ∈ W 1,2(B(0, 1), Rm. Given

X ∈ C1
c (B(0, 1),R2) we compute the stationary equation for the Lagrangian (32):

d

dt
E(u(x+ tX(x)))|t=0 = δE(u) ·X = 0.

We observe that for t small and for k = 1, 2 we have

(33) ∂xk(u(x+ tX(x))) = ∂xku(x+ tX(x)) + t

2∑
`=1

∂x`u(x)∂xkX
`(x) + o(t).

Therefore:

E(u(x+ tX(x))) =

∫
B(0,1)

f(u,∇u)(x+ tX(x))dx(34)

+ t

∫
B(0,1)

m∑
j=1

2∑
k,`=1

∂pkj f(u,∇u)(x)∂x`u
j(x)∂xkX

`(x) + o(t)

We derive with respect to t and get

0 =
d

dt
E(u(x+ tX(x)))|t=0 =

∫
B(0,1)

2∑
`=1

∂x`f(u,∇u)X`dx(35)

+
m∑
j=1

2∑
k,`=1

∫
B(0,1)

∂xk [∂pkj f(u,∇u)(x)∂x`u
j(x)X`(x)]dx︸ ︷︷ ︸

(1)

−
m∑
j=1

2∑
k,`=1

∫
B(0,1)

∂xk [∂pkj f(u,∇u)(x)∂x`u
j(x)]X`(x)dx.

Since X has compact support the term (1) is zero. Hence the system of stationary equations for

the Lagrangian (32) is given by:

(36)

 ∂x1f(u,∇u)−
∑m

j=1

∑2
k=1 ∂xk [∂pkj f(u,∇u)(x)∂x1u

j(x)] = 0

∂x1f(u,∇u)−
∑m

j=1

∑2
k=1 ∂xk [∂pkj f(u,∇u)(x)∂x2u

j(x)] = 0.

Next we assume that for every conformal diffeomorphism φ : B(0, 1) → R2 we have for a.e

x ∈ B(0, 1) :

(37) f(u ◦ φ,∇(u ◦ φ))(x) = f(u ◦ φ, (∇u) ◦ φ)(x)
|∇φ(x)|2

2
.
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The relation (37) implies that E is conformal invariant. Let φt be a family of conformal diffeo-

morphisms which is C1 with respect to t. Set Y (x) =
dφt(x)

dt |t=0

We derive (37) with respect

to t:

d

dt
(f(u ◦ φt,∇(u ◦ φt))(x)) |t=0 =

d

dt
[f(u ◦ φ, (∇u) ◦ φ)]|t=0 + f(u,∇u)∂xkY

k(x)

= ∂xk [f(u,∇u)]Y k(x) + f(u,∇u)divY = div[f(u,∇u)Y ].(38)

By combining (35) and (38) we get

2∑
`=1

∂x`f(u,∇u)Y ` −
m∑
j=1

2∑
k,`=1

∂xk [∂pkj f(u,∇u)(x)∂x`u
j(x)]Y ` =

2∑
k=1

∂xk

[
m∑
j=1

2∑
`=1

[−∂pkj f(u,∇u)(x)∂x`u
j(x)Y `(x)] + f(u,∇u)Y k

]

From above it follows that:

Theorem 2.1 (Noether (’18)). Let u ∈ W 1,2(B(0, 1),Rm) be a stationary point of the La-

grangian (32), namely it satisfies (36) in D′(B(0, 1)). If f satisfies (37) then the following

vector field (Noether’s current):

JY [u] =

(
m∑
j=1

2∑
`=1

[∂pkj f(u,∇u)(x)∂x`u
j(x)Y `(x)]− f(u,∇u)Y k

)
k=1,2

is divergence free, where Y is the infinitesimal generator of conformal transformations.

We apply theorem 2.1 to f(z, p) = |p|2
2

. In this case we have ∂pkj f(u,∇u)(x) = pkj and

JY (x) =

(
m∑
j=1

2∑
`=1

[∂xku
j(x)∂x`u

j(x)Y `(x)]− |∇u|
2

2
Y k

)
k=1,2

The stationary system of equations is:

(39)

 ∂x1

[
u2x1
2
− u2x2

2

]
+ ∂x2 [ux1ux2 ] = 0,

∂x2

[
u2x1
2
− u2x2

2

]
− ∂x1 [ux1ux2 ] = 0.
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If we choose Y1(x) = (x1, x2) (the infinitesimal generator of the dilations) and Y2(x) =

(−x2, x1) (the infinitesimal generator of the rotations) we respectively get

JY1(x) =

([
u2x1
2
−
u2x2
2

]
x1 + ux1ux2x2,

[
u2x2
2
−
u2x1
2

]
x2 + ux1ux2x1

)
,

JY2(x) =

([
u2x2
2
−
u2x1
2

]
x2 + ux1ux2x1,

[
u2x2
2
−
u2x1
2

]
x1 − ux1ux2x2

)
.

Theorem 2.1 yields:

0 = divJY1(x) = ∂x1(
u2x1
2
−
u2x2
2

)x1 − ∂x2(
u2x1
2
−
u2x2
2

)x2(40)

+x2∂x1 [ux1ux2 ] + x1∂x2 [ux1ux2 ].

and

0 = divJY2(x) = ∂x1(
u2x2
2
−
u2x1
2

)x2 + ∂x2(
u2x2
2
−
u2x1
2

)x2(41)

+x1∂x1 [ux1ux2 ]− x2∂x2 [ux1ux2 ].

By multiplying (40) and (41) respectively by x1 and x2 and then by subtracting (41) to (40)

we obtain

(42)
(
∂x1

[
u2x1
2
−
u2x2
2

]
+ ∂x2 [ux1ux2 ]

)
(x21 + x22) = 0

By multiplying (40) and (41) respectively by x2 and x1 and then summing (41) and (40) we

obtain

(43)
(
∂x2

[
u2x2
2
−
u2x1
2

]
+ ∂x1 [ux1ux2 ]

)
(x21 + x22) = 0.

Equations (42) and (43) are exactly the equations (39). In the particular case of the Dirichlet

energy Noether theorem implies the stationary equation and therefore the Pohozaev formulas

that we describe in section 3.

3. POHOZAEV IDENTITIES FOR THE LAPLACIAN IN R2

In this section we derive Pohozaev identities in 2-D (Theorem 3.1) by combining ideas from

[15] and [19]. Precisely we multiply the stationary equation (39) which is satisfied for instance
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by sufficiently smooth harmonic maps by the fundamental solution of the heat equation and a

holomorphic vector field X : C→ C.

We mention that the use of the fundamental solution to get Pohozaev-type identities and

monotonicity formulas has been performed in [19] to study the heat flow. In Chapter 9 of [15]

the authors derived in the context of Ginzurg-Landau equation generalized Pohozaev identities

for the so-called ρ-conformal vector fields X = (X1, . . . , Xn), where ρ is a given function

defined in a 2 dimensional domain. In the case ρ ≡ 1 then the ρ-conformal vector fields are

exactly conformal vector fields generated by holomorphic functions.

We recall that the fundamental solution of the heat equation

(44)

 ∂tG−∆G = 0 t > 0

G(0, x) = δx0 t = 0 .

is given by G(x, t) = (4πt)−1/2e−
|x−x0|

2

4t .

Theorem 3.1. [Pohozev in R2] Let u ∈ W 1,2
loc (R2,Rm) be a solution of

(45) ∂x`

(
|∇u|2

2

)
−

2∑
k=1

∂xk [∂xku∂x`u] = 0 in D′(R2),

` = 1, 2. Assume that

(46)
∫
R2

|∇u(x)|2dx < +∞.

Then for all x0 ∈ R2, t > 0 and every X = X1 + iX2 : C → C holomorphic function the

following identity holds

(47) 2

∫∫
R2

e−
|x−x0|

2

4t |x− x0|
(
∂u

∂ν
· ∂u
∂X

)
dx =

∫∫
R2

e−
|x−x0|

2

4t ((x− x0) ·X) |∇u|2dx.

If X = x− x0 with x0 ∈ R2 then for all t > 0 the following identity holds

(48)
∫∫

R2

e−
|x−x0|

2

4t |x− x0|2
∣∣∣∣∂u∂ν

∣∣∣∣2 dx2 =

∫∫
R2

e−
|x−x0|

2

4t

∣∣∣∣∂u∂θ
∣∣∣∣2 dx2.
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Proof. We multiply the equation (45) by X`(x)e−
|x−x0|

2

4t and we integrate(6)

0 =

∫∫
R2

[
∂x`

(
|∇u|2

2

)
− ∂xk (∂xku∂x`u)

]
X`e−

|x−x0|
2

4t dx

=

∫∫
R2

∂x`

[
|∇u|2

2
X`e−

|x−x0|
2

4t

]
dx︸ ︷︷ ︸

=0

−
∫∫

R2

|∇u|2

2
∂x`

(
X`e−

|x−x0|
2

4t

)
dx

−
∫∫

R2

∂xk

[
∂xku∂x`uX

`e−
|x−x0|

2

4t

]
dx︸ ︷︷ ︸

=0

+

∫∫
R2

∂xku∂x`u∂xk [X`e−
|x−x0|

2

4t ] dx

= −
∫∫

R2

|∇u|2 ∂X1

∂x1︸︷︷︸
∂X1

∂x1
= ∂X2

∂x2

e−
|x−x0|

2

4t dx+
1

4t

∫∫
R2

|∇u|2X · (x− x0)e−
|x−x0|

2

4t dx(49)

+

∫∫
R2

e−
|x−x0|

2

4t

 ∂X1

∂x1︸︷︷︸
∂X1
∂x1

=
∂X2
∂x2

|∇u|2 + (
∂X1

∂x2
+
∂X2

∂x1︸ ︷︷ ︸
=0

)(
∂u

∂x1

∂u

∂x2
)


− 1

2t

∫∫
R2

e−
|x−x0|

2

4t (X · ∇u)
∂u

∂ν
|x− x0|dx.

From (49) we obtain that

(50) 2

∫∫
R2

e−
|x−x0|

2

4t (X · ∇u)
∂u

∂ν
|x− x0|dx =

∫∫
R2

e−
|x−x0|

2

4t (x− x0) ·X|∇u|2dx.

In particular if X = (x − x0) by using that ∇u = (∂u
∂ν
, |x − x0|−1 ∂u∂θ ), from (50) we get the

identity

(51)
∫∫

R2

e−
|x−x0|

2

4t |x− x0|2
∣∣∣∣∂u∂ν

∣∣∣∣2 dx =

∫∫
R2

e−
|x−x0|

2

4t

∣∣∣∣∂u∂θ
∣∣∣∣2 dx

and we conclude. �

We observe that if u is smooth then equation (45) is equivalent to the equations

∂u

∂xi
·∆u = 0, x ∈ R2, i = 1, 2.

(6)We use the Einstein summation convention
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In Theorem 3.2 we get infinite many Pohozaev identities over balls in correspondence to

holomorphic vector fields X = X1 + iX2 : C→ C for maps u ∈ W 1,2
loc (R2,Rm) satisfying (45)

Theorem 3.2. [Pohozev in R2- Ball Case] Let u ∈ W 1,2
loc (R2,Rm) be a solution of

(52) ∂x`

(
|∇u|2

2

)
−

2∑
k=1

∂xk [∂xku∂x`u] = 0 in D′(R2), ` = 1, 2

Then for all x0 ∈ R2, r > 0 and every X = X1 + iX2 : C → C holomorphic function the

following identity holds

(53) 2

∫
∂B(x0,r)

∂u

∂ν
∇u ·Xdx =

∫
∂B(x0,r)

X · ν|∇u|2dx

In the particular case X = x− x0 with x0 ∈ R2, then for all r > 0 the following identity holds

(54) 2

∫
∂B(x0,r)

∣∣∣∣∂u∂ν
∣∣∣∣2 dσ =

∫
∂B(x0,r)

|∇u|2 dσ.

or

(55)
∫
∂B(x0,r)

∣∣∣∣∂u∂ν
∣∣∣∣2 dσ =

1

r2

∫
∂B(x0,r)

∣∣∣∣∂u∂θ
∣∣∣∣2 dσ

Proof. We multiply the equation (52) by X` and we integrate over B(x0, r). By using the

Cauchy Riemann equations we get

0 =

∫
B(x0,r)

X`

[
∂

∂x`

(
|∇u|2

2

)
− ∂xk [∂xku∂x`u]

]
dx

=

∫
B(x0,r)

∂

∂x`

[
X` |∇u|2

2

]
dx−

∫
B(x0,r)

|∇u|2

2

[
∂X1

∂x1
+
∂X2

∂x2

]
dx

−
∫
B(x0,r)

∂xk
[
X`∂xku∂x`u

]
dx+

∫
B(x0,r)

∂X`

∂xk
[∂xku∂x`u] dx

= − 1

2r

∫
∂B(x0,r)

X · (x− x0)|∇u|2dσ −
∫
B(x0,r)

|∇u|2dx

+
1

r

∫
∂B(x0,r)

(X · ∇u)(
∂u

∂ν
)dσ +

∫
B(x0,r)

|∇u|2dx(56)

It follows that
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∫
∂B(x0,r)

(X · ∇u)(∇u · (x− x0))dσ =
1

2

∫
∂B(x0,r)

X · (x− x0)|∇u|2dσ.

and we conclude. �

4. PROOF OF PROPOSITION 1.2.

From Theorem 1.4 it follows that u satisfies in particular

(57)
∣∣∣∣∫ 2π

0

u(eiθ) cos(θ) dθ

∣∣∣∣2 =

∣∣∣∣∫ 2π

0

u(eiθ) sin(θ) dθ

∣∣∣∣2
We can rewrite (57) as follows

(58)
∣∣∣∣∫ 2π

0

u(eiθ)<(deiθ)

∣∣∣∣2 =

∣∣∣∣∫ 2π

0

u(eiθ)=(deiθ)

∣∣∣∣2 .
Given a ∈ R with |a| < 1 and α ∈ R we consider the Möbius map Mα,a(z) := eiα z−a

1−az and

we define

ua,α(eiθ) := u ◦Mα,a(z).

Since the condition (15) is invariant with respect to Möbius transformations for every α ∈ R

and for every a ∈ (−1, 1) we get

(59)
∣∣∣∣∫ 2π

0

u

(
eiα

z − a
1− az

)
<(deiθ)

∣∣∣∣2 =

∣∣∣∣∫ 2π

0

u

(
eiα

z − a
1− az

)
=(deiθ)

∣∣∣∣2 .
or equivalently

(60)
∣∣∣∣<(∫ 2π

0

u

(
eiα

eiθ − a
1− aeiθ

)
deiθ

)∣∣∣∣2 =

∣∣∣∣=(∫ 2π

0

u

(
eiα

eiθ − a
1− aeiθ

)
deiθ

)∣∣∣∣2 .
We set

eiϕ := eiα
eiθ − a
1− aeiθ

,

which implies that

(61) eiθ =
ei(ϕ−α) + a

1 + aei(ϕ−α)

(62) d(eiθ) =
1− a2

(1 + aei(ϕ−α))2
d(ei(ϕ−α))
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By plugging (61) and (62) into (60) and dividing by (1− a2) we get

(63)
∣∣∣∣<(∫ 2π

0

u(eiϕ)
e−iα

(1 + aei(ϕ−α))2
d(eiϕ)

)∣∣∣∣2 =

∣∣∣∣=(∫ 2π

0

u(eiϕ)
e−iα

(1 + aei(ϕ−α))2
d(eiϕ

)∣∣∣∣2 .
Observe that for all |z| < 1 we have

z

(1 + z)2
=
∞∑
n=1

n(−1)n−1zn

In particular

(64)
ei(ϕ−α)

(1 + aei(ϕ−α))2
=
∞∑
n=1

n(−1)n−1an−1ein(ϕ−α)

and

(65) <
(

ei(ϕ−α)

(1 + aei(ϕ−α))2

)
=
∞∑
n=1

n(−1)n−1an−1 cos(n(ϕ− α))

(66) =
(

ei(ϕ−α)

(1 + aei(ϕ−α))2

)
=
∞∑
n=1

n(−1)n−1an−1 sin(n(ϕ− α))

We can write

∣∣∣∣<(∫ 2π

0

u(eiϕ)
ei(ϕ−α)

(1 + aei(ϕ−α))2
dϕ

)∣∣∣∣2
(67)

=
∞∑
n=1

(−1)n−1an−1
n−1∑
k=1

(n− k)k

(∫ 2π

0

u(eiϕ) cos(k(ϕ− α))dϕ

)(∫ 2π

0

u(eiϕ) cos((n− k)(ϕ− α))dϕ

)
and

∣∣∣∣=(∫ 2π

0

u(eiϕ)
ei(ϕ−α)

(1 + aei(ϕ−α))2
dϕ

)∣∣∣∣2
(68)

=
∞∑
n=1

(−1)nan−1
n−1∑
k=1

(n− k)k

(∫ 2π

0

u(eiϕ) sin(k(ϕ− α))dϕ

)(∫ 2π

0

u(eiϕ) sin((n− k)(ϕ− α))dϕ

)
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The identity (63) and the relations (67), (68) imply that for every n ≥ 2 we obtain the following

identities

n−1∑
k=1

(n− k)k

(∫ 2π

0

u(eiϕ) cos(k(ϕ− α))dϕ

)(∫ 2π

0

u(eiϕ) cos((n− k)(ϕ− α))dϕ

)(69)

=
n−1∑
k=1

(n− k)k

(∫ 2π

0

u(eiϕ) sin(k(ϕ− α))dϕ

)(∫ 2π

0

u(eiϕ) sin((n− k)(ϕ− α))dϕ

)
.

From (69) we can deduce a countable family of relations between the Fourier coefficients of the

map u. Precisely if we set for every n ≥ 1
an :=

1

2π

∫ 2π

0

u(eθ) cosnθ dθ

bn =
1

2π

∫ 2π

0

u(eθ) sinnθ dθ,

we get

n−1∑
k=1

(n− k)k [(cos(kα)ak + sin(kα)bk) (cos((n− k)α)an−k + sin((n− k)α)bn−k)

− (cos(kα)bk − sin(kα)ak) (cos((n− k)α)bn−k − sin((n− k)α)an−k)] = 0(70)

The identity (70) can be rewritten as follows

cos(nα)(
n−1∑
k=1

(n− k)k(akan−k − bkbn−k)) + sin(nα)(
n−1∑
k=1

(n− k)k(akbn−k + bkan−k)) = 0.

(71)

The relation (71) yields (29) and (30) because of the linear dependence of cos(nα) and sin(nα).

We observe that for n = 2 we obtain:

(72) (|a1|2 − |b1|2) cos(2α)− 2a1 · b1 sin(2α) = 0.

Since α ∈ R is arbitrary we get
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
|a1| = |b1|

a1 · b1 = 0

If n = 3 we get

(73) 4(a1 · a2 − b1 · b2) cos(3α)− 4(a1 · b2 + b1 · a2) sin(3α) = 0.

The relation (73) gives 
a1 · a2 = b1 · b2

a1 · b2 = −a2 · b1.

If n = 4 we get


|a2|2 − |b2|2 =

3

2
(b1 · b3 − a1 · a3)

a2 · b2 = −3

4
(a1 · b3 + b1 · a3).

We can conclude the proof. �
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