
CRITICAL EXPONENTS AND WHERE TO FIND THEM

ESPONENTI CRITICI E DOVE TROVARLI

SANDRA LUCENTE

Abstract. In this expository paper we present a list of different semilinear wave-type

problems with time-variable coefficients. The aim of this work is to understand the in-

fluence of such coefficients on the critical exponents for polynomial nonlinearities. State-

ments of global existence and blow-up will follow according to exponents which are below

or above these critical ones.

Sunto. Vengono qui elencati alcuni problemi di evoluzione semilineari di tipo onde a

coefficienti variabili. Si vuole capire l’influenza dei coefficienti variabili sull’esponente

critico della nonlinearità di tipo polinomiale. Dopo aver congetturato tali esponenti, si

danno risultati di esistenza globale e blow-up nei casi sovracritici e sottocritici.
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1. Introduction

Let L(x, t,Dx, ∂t) be a linear evolution operator; we consider the semilinear equation

Lu = f(u) |f(u)| ,' |u|p ;

whose analysis is influenced by the behavior of the function f when u is large or small.

We look for:

• RL ⊂ R the range of p for which we are able to prove local existence in time;

• RG ⊂ RL the range of p for which we are able to prove global existence in time;

• R6∃ the range of p where even the weak solutions do not exist globally;

• RB ⊃ R6∃ the range of p for which the local solutions blow up in a certain norm.
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An exponent pc is critical if we are able to prove that RL, RG, R6∃, RB are intervals

contained in [1,+∞) and

R̄G ∩ R̄6∃ = {pc} or R̄G ∩ R̄B = {pc}.

Let us list the critical exponents for well–known semilinear equations; we roughly find

the following situation:

Equation space critical exponents known results

−∆u = |u|p−2u H1(Ω) 2∗ = 2n
n−2

p < 2∗ ∃

u|∂Ω = 0 p > 2∗ 6 ∃

∂t −∆u = up weak sol. pF (n) = 1 + 2
n

p < pF 6 ∃

u ≥ 0 p > pF global ∃

iut + ∆u = ±|u|p−1u L2(RN) pL2(n) = 1 + 4
n

p < pF no scattering

pF < p < pL2 global ∃

iut + ∆u = −|u|p−1u H1(RN) pSo(n) = n+2
n−2

pL2 < p < pSo global ∃

= 2∗ − 1

utt −∆u = |u|p−1u weak sol. pK = 1 + 2
n−1

p < pK 6 ∃

utt −∆u = ±|u|p−1u small data pSt = p < pSt 6 ∃ blow up

pk+
√
p2K+4pK−4

2
p > pSt global ∃

utt −∆u = −|u|p−1u H1(RN) pcc(n) = n+3
n−1

pcc(n) < p < pSo(n)

pSo(n) global ∃

utt −∆u+ u = ±|u|p−1u small data pF , pSo p < pF blow-up

pF < p < pSo global ∃

We point out that in this table we are omitting boundary regularity assumptions,

possible sign assumptions for the solutions, the dimension where the result of the last

column holds, and so on. We refer the reader to [17] for details. We also neglect to

specify when a critical exponent belongs to RB or R6∃ and when it belongs to RG.

We observe that some exponents are simply a shift of others:

pK(n) = pF (n− 1) ; pL2(n) = pSo(n+ 2) ; pcc(n) = pSo(n+ 1) .

Hence the meaningful exponents are only pF , pSt and pSo.
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A unified vision of these exponents is given in [16] as follows:

n

2
(p− 1) =


1 =⇒ p = pF
p+1

2
+ 1

p
=⇒ p = pSt

p+ 1 =⇒ p = pSo

We will see that these critical exponents reveal a ‘barycentre” among the scaling properties

of the linear operator, the growth of the nonlinear polynomial term and the kind of

solution we are looking for. In turn, the scaling properties of the linear operator depend

on the space dimension, the order of the operator and the decomposition of the variable

in suitable subspaces due to the physical model that the equation describes (for example

space-time variables).

Our aim is to consider time-variable coefficients in the linear operator. We want to

understand the influence of the growth of this coefficients on the critical exponents. The

main difficulty is the loss of the scaling invariant properties due to the time-coefficients.

In particular it is very difficult to obtain Lp − Lq estimates. A successful idea is to treat

these cases by finding a transformation of variables that put the operator in the constant

coefficients form. Clearly this is not simple to be done, hence we will present only some

particular cases and we will observe again a shift of the basic critical exponents connected

to the variable coefficients.

The bibliography on critical exponents is huge, so we do not pretend to summarize it

here. We propose only a path through the works of the author as a simple example of

this topic. The seminal paper on the critical exponents is [11]; other important hints for

a unified vision can be found in the books [16], [17].

Acknoledgment The author thanks Alberto Parmeggiani for the kind invitation to

give the talk related to this subject in Seminario Pini in Bologna on 8th February 2018.

2. Fujita-type critical exponents

In [7] a non-existence result has been obtained for weak solutions of semilinear equations

when the operator is quasi-homogeneous in two sets of variables.
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Definition 2.1. Let L(x, y,Dx, Dy) be a differential operator of order m ∈ N defined on

D(L), a suitable set of functions on Rn
x × Rd

y. Let N = n+ d. We say that L is a quasi-

homogeneous operator of type (δ1, δ2), with δ1, δ2 > 0, if for any λ > 0, (x, y), (ξ, η) ∈ RN ,

one has

L(λ−δ1x, λ−δ2y, λδ1ξ, λδ2η) = λmL(x, y, ξ, η).

We call quasi-homogeneous dimension of L the quantity

QL = δ1n+ δ2d.

It can be proved that for a quasi-homogeneous operator L of type (δ1, δ2) and order m,

one has

LSIλδ1S
II
λδ2f = λmSIλδ1S

II
λδ2Lf for f ∈ D(L).

Here SIλf(x, y) := f(λx, y) and SIIλ f(x, y) := f(x, λy).

In this context, the main result of [7] can be stated in the following form.

Theorem 2.1. Suppose that L is a linear differential operator of order m ≥ 1 of the form

L(x, y,Dx, Dy) =
∑

|(α,β)|≤m

lα,β(x, y)Dα
xD

β
y .

We assume that

(i) L is quasi-homogeneous of type (δ1, δ2), with δ1, δ2 > 0;

(ii) for any (α, β) ∈ Nn × Nd, it holds Dα
xD

β
y lα,β(x, y) = 0.

Let p > 1 and p′ = p
p−1

. Let lα,β(x, y) ∈ Lp
′

loc(Rn) for any α1 ≤ α and β1 ≤ β, |(α, β)| ≤ m.

If

(1) (Q−m)p ≤ Q ,

then

Lu = |u|p

has no nontrivial weak solutions u ∈ Lploc(RN).
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In this theorem weak solution means a distribution u ∈ Lploc(RN) such that∫
RN
|u|pϕdxdy =

∫
RN
uL∗ϕdxdy, ∀ϕ ∈ C∞0 (RN ,R+) ,

where L∗ denotes the adjoint of L, which satisfies∫
(Lf)g dxdy =

∫
fL∗g dxdy,

for any f ∈ D(L), g ∈ D(L∗). Clearly, the domains D(L) and D(L∗) depend on the

regularity of the coefficients lα,β. Starting from (1), we put

pF =

 1 + m
Q−m , Q > m

∞ , Q ≤ m.

Let us consider the case d = 1. Interpreting y := t as a time-variable, this result then

applies to evolution equations. For example, for the heat equation we find the Fujita

critical exponent

L = ∂t −∆ ; m = 2 ; (δ1, δ2) = (1, 2) ; Q = n+ 2 ; pF = 1 +
2

n
.

The same exponent appears for the nonlinear Schrödinger equation.

If we consider the wave equation, we get

L = ∂tt −∆ ; m = 2 ; (δ1, δ2) = (1, 1) ; Q = n+ 1 ; pF = 1 +
2

n− 1
.

This corresponds to the exponent pK in Section 1. We choose this notation since a

nonexistence result for L1
loc(Rn) solutions of

utt −4u = |u|p , u(0, x) = u0(x) ut(0, x) = u1(x) ,

under the assumptions u0, u1 ∈ L1 compactly supported functions and∫
Rn
u1(x) dx > 0

had been established by Kato in 1980. More precisely, for compacted supported data, with

average of the the initial velocity strictly positive, the average of the solution
∫
Rn u(t, x) dx

satisfies an ODE and blows up in finite time.

If we have ∑
06=|(α,β)|≤m

lα,β(x, y)Dα
xD

β
yu = f(u).
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with |f(u)| 6= |u|p, the scaling argument is not sharp in predicting critical exponents,

but some partial results can be established. On the contrary, our theorem does not say

nothing for the Klein-Gordon equation

utt −4u+ u = |u|p .

The main problem is that l0,0 6= 0. In other words, f(u) = −u+ |u|p seems not treatable

by scaling. This happens also in presence of memory-type nonlinear terms as considered

in [1] (whose title underlines this phenomenon).

It is not possible to apply directly Theorem 2.1 when the operator is not quasi-

homogeneous. In particular we want to extend Theorem 2.1 to operators which are

quasi-homogeneous only in the principal part. For example, let us consider the classical

wave damping equation

(2) utt −∆u+ ut = |u|p .

There is a competition between the heat operator ut −∆ and the wave operator utt −∆.

The idea is to transform (2) into an equation involving a quasi-homogeneous operator.

In [5] we apply this idea to a more general equation Lu = |u|p. We assume that there

exists g(x) such that L∗Mg has a non-zero order term; here Mg is the multiplication

operator by g. In addiction, with respect to the result of [7], we consider the support

of the test functions in a parallelepiped whose edges are established in relation with g

and the coefficients aα. In particular this technique enables us to establish non-existence

results for L = ∂tt − a(t)∆ + b(t)∂t.

3. Sobolev-type critical exponents

Applying Theorem 2.1 to the Tricomi equation

(3) utt − |t|λ∆u = |u|p

we find the critical exponent

pF = 1 +
2

2+λ
2
n− 1

= 1 +
4

(2 + λ)n− 2
.
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Indeed the operator has order m = 2 and it is quasi-homogeneous of type (2+λ
2
, 1), so

that Q = 1+λ
2
n+ 1. This first result for variable coefficients equations follows directly by

Theorem 2.1: if u ∈ Lploc is the solution of (3) then u ≡ 0.

Coming back to Section 1, we ask which exponents for this equation plays the role of

pSo and pSt. In particular, we expect a dependence on λ. By using a heuristic argument,

based on the homogeneity properties of our equation, we may substitute pSo(Q− δ2d) for

pSo(n) obtaining

(4) pc(λ, n) :=
n(λ+ 2)/2 + 2

n(λ+ 2)/2− 2
=
n(λ+ 2) + 4

n(λ+ 2)− 4
.

We may expect a smooth large data solution of

utt − |t− t0|λ∆u = −u|u|p , t0 > 0,

for some p ≤ pc(λ, n) . In particular one expects classical solutions for

n = 1, when either λ ≤ 2 or p ≤ λ+ 6

λ− 2
;

n = 2, when either λ = 0 or p ≤ 1 +
4

λ
;

n = 3, for p ≤ 3λ+ 10

3λ+ 4
;

n = 4, for p ≤ λ+ 3

λ+ 1
.

The known results give a positive feeling for this conjecture:

• in [8] the case n = 3 is considered. The author proves classical global solution

when 3
2
< p < pc(λ, 3);

• in [13] the case n = 3 critical is added under radial assumption;

• in [14] the case n = 4 and p < pc(λ, 3) is reached with radial assumption.

In this direction one can see also [10], [12]. However, some problems appear in low

dimensions, indeed in [9] the case n = 1 is sharp only for 0 ≤ λ ≤ 1, while for larger λ

the authors consider only p < λ+3
λ−1

< pc(λ, 1). For n = 2 the result in [9] holds for

p < 1 +
1√

2λ2 + 8λ+ 4− 2
.
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This value is strictly less then pc(λ, 2) = 1 + 4
λ
. To prove global existence for n = 2 and

p close to pc(λ, 2) is still an open problem.

The quoted results are mainly obtained by using the Liouville transformation that we

introduce in the next section.

4. Strauss-type critical exponents

Given a(t) : R+ → R+, we consider the Cauchy problem for the wave equation with

variable speed

(5)


utt − a(t)∆u = f(t, u), (t, x) ∈ R+ × Rn

u(0, x) = u0(x), x ∈ Rn

∂tu(0, x) = u1(x), x ∈ Rn .

Let t0 > 0. We associate with a(t) the function φ which satisfies φ′(S) = a(φ(S))−1/2 S ∈ [0, T0),

φ(0) = 0,

with

T0 =

∫ t0

0

a(s)1/2 d s

Following [12], one sees that if u solves (5) in [0, t0), then the function

v(x, T ) = u(x, φ(T ))

is a solution of the variable damping equation

(v
TT
−4v − φ′′(φ′)−1v

T
)(x, T ) = (φ′(T ))2f(φ(T ), u(x, φ(T )))

on T ∈ [0, T0). One can also remove the damping term by taking

w(T, x) = (φ′(T ))−1/2u(φ(T ), x) = a(φ(T ))1/4u(φ(T ), x)

defined in [0, T0). This solves the variable mass equation

(w
TT
−∆w)(x, T )−

(
3

4

(φ′′(T ))2

(φ′(T ))2
− 1

2

φ′′′(T )

φ′(T )

)
w(x, T ) = −(φ′(T ))3/2f(φ(T ), u(x, φ(T ))) .
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Sometimes this transformation gives the possibility to obtain quasi-homogeneous opera-

tors. For example let us consider the scale invariant damping wave equation. It is then

equivalent to treating

utt −∆u+
µ

1 + t
ut = |u|p ;

vTT − (1 + T )
2µ
1−µ∆v = (1 + T )

2µ
1−µ |v|p ;

wTT −∆w +

(
µ

2
− µ2

4

)
1

(1 + T )2
w = (1 + T )

µ
2

(1−p)|w|p .

If we know blow-up or global existence for one of them, then we get the same result for

the others. In particular the equation in ṽ(x, T ) := v(x, T − 1) is quasi-homogeneous of

dimension Q = n
1−µ + 1 and we may apply Theorem 2.1.

There is another property of the Liouville transformation: in some lucky cases the operator

becomes an operator with constant coefficients. In particular in the last example this

happens for µ = 2. In [6] this trick revealed the wave-nature of the equation and for high

space-dimension we gave the first example of Strauss critical exponent which appears in

a damping equation. The main result of [6] can be stated as following.

Theorem 4.1. Given (u0, u1) ∈ C2
c (Rn)× C1

c (Rn), we consider

(6)


utt −4u+ 2

1+t
ut = |u|p, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn .

• If u1, u0 ≥ 0, and (u0, u1) 6≡ (0, 0). Assume that u ∈ C2([0, T )× Rn) is a solution

to the Cauchy problem (6). If 1 < p ≤ max{pSt(n+ 2); pF (n)}, then T <∞.

• If n = 2 and p > 2 = pSt(4) = pF (4), then there exists ε0 > 0 such that for

any ε ∈ (0, ε0), if u0 = εv̄0 and u1 = εū1, then the Cauchy problem (6) admits a

unique global small data solution u ∈ C([0,∞), H2)∩C1([0,∞), H1)∩C2([0,∞), L2).

• Let n = 3 and p > pSt(5). Then there exists ε0 > 0 such that for any ε ∈ (0, ε0),

if u0 = εū0 and u1 = εū1, radial initial data then the Cauchy problem (6) admits a

unique global small data radial solution u ∈ C([0,∞)×R3)∩C2([0,∞)×(R3\{0})).
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This result has been generalized in many directions, but the main idea is that a transfor-

mation puts the equation in a new form which avoids the damping term and a competition

between Fujita and Strauss exponent appears. For example, in [15] the equation

vtt −∆v +
µ1

1 + t
vt +

µ2

(1 + t)2
v = |v|p

becomes

utt − (1 + t)2`∆u = (`+ 1)(1 + t)k|u|p

by means of the the transformation

τ = (1 + t)`+1 − 1 , y = (1 + `)x , u = (1 + τ)
µ1−1

2
+
√
δ

2 v .

where δ = (µ1 − 1)2 − 4µ2 ∈ (0, 1].

5. Generalizations

5.1. Pseudo-differential equations. Having in mind Definition 2.1 of a quasi-homo-

geneous operator, we can apply previous heuristic arguments to find critical exponents

also to pseudo-differential operators. Few works are devoted to this kind of equations

since a double difficulty appears. First, the non-existence results are strongly based

on test functions methods, and the test functions have compact support, while pseudo-

differential operators are not local. Secondly, for proving existence results one needs some

descriptions of fundamental solutions or at least their properties, but this information is

very difficult to derive for pseudo-differential operators.

5.2. Quasilinear equations. Previous arguments applies also to quasilinear equations,

when the equation is linear in higher order derivatives but the nonlinear terms can involve

lower order derivatives. For example, in [3] and [4] the following equation is considered:

utt + ∆2θu+ 2µ(−∆)θut = f(u, ut) .

The operator L = ∂tt + ∆2θ + 2µ(−∆)θ∂t is quasi-omogeneaus of order m = 4θ with

quasi-homogeneous dimension Q = n+ 2θ.

If f(u) = |u|p, then we conjecture that the critical Fujita exponent is given by

p = 1 + 4θ/(n− 2θ) .



112 SANDRA LUCENTE

Corresponding results are proved in [3]. If we take f(ut) = |ut|p, then we put v = ∂tu and

formally consider L̃v = L(∂t)
−1v = |v|p which has symbol (τ 2− |ξ|2θ + 2µ|ξ|τ)τ−1. Hence

we are dealing with another quasi-homogeneous operator having dimension Q̃ = 2θ + n

but now order m = 2θ. The critical exponent becomes

p = 1 + 2θ/n .

The related existence/non-existence theorems are given in [3] for small data, in [4] for

large data under a sign assumption on the nonlinear term.

Some critical exponents for fully non-linear equations are considered in [2].

5.3. Changing the space of initial data. In this paper we do not discuss another issue

that deeply influences the critical exponents: the space of initial data. Here pF , pSo and

pStr concern classical solutions or their approximations. If we want to discuss the well

posedness of a nonlinear wave-type equation in a certain Sobolev-space, thenthe critical

exponents may change. In particular pSo is related to H1 solutions. Indeed if we put

r = 2 and s = 1 we have H1 = Hs,r and

pSo =
n+ 2

n− 2
⇐⇒ 1

pSo + 1
=

1

2
− 1

n
=

1

r
− s

n
.

This means that we are considering the critical exponent of Lp+1 ⊂ Hr,s given by

pSo,s,r = r − 1 +
r2s

N − rs
.

The choice s = 1 for the wave equation corresponds to the energy space. To put it simply,

this choice is connected with the order of the wave operator: in the energy space s = m/2,

and r = 2, that is

pSo = 1 +
2m

N −m
.

Extending this argument, the critical Sobolev exponent for theHs solution of L(∂t, Dx)u =

−|u|p−1u with quasi-homogeneous L is given by

(7) pSo = 1 +
4s

Q− δ2 − 2s
.

In particular we find again (4). In a future paper, we plan to analyze

utt + ∆2θu+ 2µ(−∆)θut = −|u|p−1u,
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and prove the global existence of energy solutions with large data for

p < 1 +
8θ

N − 4θ
;

that is in (7) we put Q = 2θ + n, δ2 = 2θ and 2s = m = 4θ.

5.4. Concluding remarks. The previous arguments could predict a critical exponents:

the idea is finding a transformation that brings a generic PDE with variable coefficients

into a quasi-homogeneous equation. If we are able to find out this transformation, then

we are putting the equation in a sort of “canonical form”. A first example in this direction

was given in [11]: in order to treat the variable coefficient equation

ut −∆u− x

2
· ∇u− 1

p− 1
u = |u|p ,

after the transformation

v = e
s
p−1u(es − 1, es/2x) ,

one can consider

vs = ∆v + |v|p .

Clearly, it is very difficult to find a similar “canonical form”. Liouville transformation or

the multiplication by g as in [7] are two examples in this direction. On the other hand,

this is only the first step. In the variable coefficients context it is difficult to identify even

the range of local existence. More difficult is determining the range of global existence

and the blow up dynamic. In particular the existence results require decay estimates

which in turn depend on the fundamental solution of the operator. The broken symmetry

and homogeneity due to the variable coefficients make these fundamental solutions more

complicated to express and estimate.

References

[1] Cazenave, T., Dickstein, F., Weissler, F.B., An equation whose Fujita critical exponent is not given

by scaling, Nonlinear Analysis: Theory, Methods & Applications, 68 (2008), 862–874.

[2] Deng K., Levine H.A., The role of critical exponents in blow-up problems: the sequel, Journal of

Mathematical Analysis and Applications, 243 (2000), 85–126.

[3] D’Abbicco M., Ebert M.R., A new phenomenon in the critical exponent for structurally damped

semi-linear evolution equations, Nonlinear Analysis 149 (2017), 1–40.



114 SANDRA LUCENTE

[4] D’Abbicco M., Ebert M.R., Lucente S., Self-similar asymptotic profile of the solution to a nonlinear

evolution equation with critical dissipation, Mathematical Methods in the Applied Sciences, 40

(2018), 6480–6494.

[5] D’Abbicco M., Lucente S., A modified test function method for damped wave equations, Adv. Non-

linear Studies, 13 (2013), 867–892.

[6] D’Abbicco M., Lucente S., Reissig M., A shift in the Strauss exponent for semilinear wave equations

with a not effective damping, J. Differential Equations, 259 (2015), 5040–5073.

[7] D’Ambrosio L., Lucente S., Nonlinear Liouville theorems for Grushin and Tricomi operators, J.

Differential Equations 123 (2003), 511–541.

[8] D’Ancona P., A Note on a Theorem of Jörgens, Math. Z. 218 (1995), 239–252.

[9] D’Ancona P., Di Giuseppe A., Global Existence with Large Data for a Nonlinear Weakly Hyperbolic

Equation, Math. Nachr. 231 (2001), 5–23.

[10] Fanelli L., Lucente S., The critical case for a semilinear weakly hyperbolic equation, El. Journ. of

Diff. Eq. 101 (2004), 1–13 .

[11] Levine H.A., The role of critical exponents in blow-up problems, SIAM Review, 32 (1990), 262–288.

[12] Lucente S., On a class of semilinear weakly hyperbolic equations, Annali dell’Università di Ferrara
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