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Abstract. We generalize to the case of the p−Laplacian an old result by Hersch and

Protter. Namely, we show that it is possible to estimate from below the first eigenvalue

of the Dirichlet p−Laplacian of a convex set in terms of its inradius. We also prove a

lower bound in terms of isoperimetric ratios and we briefly discuss the more general case

of Poincaré-Sobolev embedding constants. Eventually, we highlight an open problem.
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1. Introduction

1.1. Overview. For every open set Ω ⊂ RN , we consider its principal frequency or first

eigenvalue of the Laplacian with Dirichlet conditions, defined by

λ(Ω) = inf
u∈C∞0 (Ω)\{0}

∫
Ω

|∇u|2 dx∫
Ω

|u|2 dx
.

We recall that, whenever the completion D1,2
0 (Ω) of C∞0 (Ω) with respect to the norm

‖∇u‖L2(Ω) is compactly embedded into1 L2(Ω), the number λ(Ω) coincides with the small-

est λ ∈ R such that the boundary value problem

−∆u = λu, in Ω, u = 0, on ∂Ω,

does admit a nontrivial solution u ∈ D1,2
0 (Ω).
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1For example, this happens if Ω is bounded or has finite N−dimensional Lebesgue measure.
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For general sets, the explicit determination of λ(Ω) can be a challenging task. It is thus

important to look for sharp estimates on λ(Ω) in terms of simpler quantities, typically

of geometric flavour. The most celebrated instance of such an estimate is the so-called

Faber-Krahn inequality. This asserts that λ(Ω) can be estimated from below by a negative

power of the N−dimensional measure of Ω. Precisely, we have

(1) λ(Ω) ≥
(
|B|

2
N λ(B)

) 1

|Ω| 2
N

,

where B is any N−dimensional ball. Equality (1) is sharp in the sense that the dimen-

sional constant |B| 2
N λ(B) is attained whenever Ω is itself a ball (actually, this is the only

possibility, up to sets of zero capacity).

In despite of its elegance, sharpness and simplicity, the lower bound dictated by (1)

loses its interest for open sets such that

|Ω| = +∞ and λ(Ω) > 0.

This happens for example for the infinite slab Ω = RN−1 × (0, 1).

For such cases, it could be natural to ask whether a lower bound on λ(Ω) can be given

in terms of the inradius RΩ, i.e. the radius of the largest open ball contained in Ω. In

other words, we can ask whether we can have an inequality like

(2)
C

R2
Ω

≤ λ(Ω).

The power −2 on RΩ is imposed by scale invariance, once it is observed that λ(Ω) has the

physical dimensions “length to the power −2”. However, an estimate like (2) can not be

true for general open sets, in dimension N ≥ 2. Indeed, it is sufficient to consider the set

Ω = RN \ ZN .

It is easy to see that RΩ < +∞, while λ(Ω) = λ(RN) = 0, since points have zero capacity

in RN , if N ≥ 2.

On the other hand, if we impose further geometric restrictions on the open set Ω, then

it is possible to prove (2). An old result due to Hersch (see [9]) shows that for an open
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convex set Ω ⊂ R2, it holds

(3)
(π

2

)2 1

R2
Ω

≤ λ(Ω).

The inequality is sharp and it is strict among bounded convex sets. The proof by Hersch is

based on a method that he called “évaluation par défaut ”. Later on, Protter generalized

this result to higher dimensions by using the same technique, see [17, page 68].

We also point out that the Hersch-Protter estimate has been recently generalized in [4,

Theorem 5.1] to the anisotropic case, i.e. to the case of

λH(Ω) = inf
u∈C∞0 (Ω)\{0}

∫
Ω

H(∇u)2 dx∫
Ω

|u|2 dx
,

where H : RN → [0,+∞) is any norm. In this case, the definition of inradius has to be

suitably adapted, in order to take into account the anisotropy H.

Remark 1.1 (More general sets I). We have already observed that (2) can not be true in

general. However, the planar case N = 2 is peculiar and well-studied: in this case, if Ω

is simply connected, then it is possible to prove (2), but the main open issue in this case

is the determination of the sharp constant C. The first result in this direction is due to

Hayman [8]. We refer to [1] for a review of this kind of results.

Actually, Osserman in [14] showed that (2) still holds for planar sets with finite con-

nectivity, the constant C depending on the connectivity k and degenerating as k goes to ∞

(this is in perfect accordance with the above example of R2 \Z2). The result by Osserman

has then been improved by Croke in [5].

For the higher dimensional case N ≥ 3, some results for classes of open sets more

general than convex ones have been given by Hayman [8, Theorem 2] and Taylor [18,

Theorem 3].
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1.2. The results of this paper. We now fix an exponent 1 < p < +∞, then for an

open set Ω ⊂ RN , we introduce the quantity

λp(Ω) = inf
u∈C∞0 (Ω)\{0}

∫
Ω

|∇u|p dx∫
Ω

|u|p dx
.

As in the quadratic case p = 2, whenever the completion D1,p
0 (Ω) of C∞0 (Ω) with respect

to the norm ‖∇u‖Lp(Ω) is compactly embedded into Lp(Ω), the number λp(Ω) coincides

with the smallest λ ∈ R such that the boundary value problem

−∆pu = λ |u|p−2 u, in Ω, u = 0, on ∂Ω,

does admit a nontrivial solution u ∈ D1,p
0 (Ω). Here ∆p is the quasilinear operator

∆pu = div (|∇u|p−2∇u),

known as p−Laplacian. For this reason, λp(Ω) is called first eigenvalue of the p−Laplacian

with Dirichlet conditions on Ω. In this case as well, we have the sharp lower bound

λp(Ω) ≥
(
|B|

p
N λp(B)

) 1

|Ω| pN
,

which generalizes (1) to p 6= 2. The main goal of this paper is to generalize the Hersch-

Protter estimate (3) to the case of λp. At this aim, we introduce the one-dimensional

Poincaré constant

πp = inf
ϕ∈C1([0,1])\{0}

{
‖ϕ′‖Lp([0,1])

‖ϕ‖Lp([0,1])

: ϕ(0) = ϕ(1) = 0

}
.

We will prove the following

Theorem 1.1. Let Ω ⊂ RN be an open convex set. Then we have

(4) λp(Ω) ≥
(πp

2

)p 1

Rp
Ω

.

The estimate is sharp, equality being attained for example:

• by an infinite slab, i.e. a set of the form{
x ∈ RN : a < 〈x, ω〉 < b

}
,

for some a < b and ω ∈ SN−1;
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• asymptotically by the family of “collapsing pyramids”

Cα = convex hull
(

(−1, 1)N−1 ∪ {(0, . . . , 0, α)}
)
,

in the sense that

lim
α→0+

Rp
Cα
λp(Cα) =

(πp
2

)p
;

• more generally, asymptotically by the family of infinite slabs with section given by

a k−dimensional collapsing pyramid, i.e.

RN−k × Cα, for N ≥ 3 and 2 ≤ k ≤ N − 1.

Remark 1.2. After the completion of this paper, we have been informed by Vladimir

Bobkov that the same result is contained [11, Theorem 2.1]. In turn, more recently this

result has been generalized in [6, Theorem 5.1], to cover the anisotropic case. However,

in both references the proof of the lower bound is different, as they do not use the original

idea by Hersch. In [11], the so-called method of interior parallels is used (see [11, Lemmas

4.5 & 4.6]), while [6] exploits a method based on maximum principles and the so-called

P−functions. We also point out that our result contains a finer analysis of the equality

cases, since in [6, 11] the sequence of collapsing pyramids is not identified.

Remark 1.3 (More general sets II). For p 6= 2, the case of more general sets has been

investigated by Poliquin in [15]. In [15, Theorem 1.4.1] it is proved that for p > N and

Ω ⊂ RN open bounded set, one has

λp(Ω) ≥ C

Rp
Ω

,

for a constant C = C(N, p) > 0. Then in [15, Theorem 1.4.2] the same estimate is proved,

for p > N − 1 and Ω having a connected boundary. In both cases, the constant C is not

explicit. In [16, Proposition 3.5] the same author proved such a lower bound for convex

sets with an explicit constant, which is however not sharp.

As already observed by Makai in the case p = N = 2 (see [13]), the estimate of Theorem

1.1 in turn implies another interesting lower bound on λp(Ω), this time in terms of the

quantity
P (Ω)

|Ω|
,
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where P (Ω) is the perimeter of Ω. The resulting estimate, which seems to be new for

N ≥ 3 and p 6= 2, is contained in Corollary 5.1 below.

Remark 1.4 (Upper bound). Up to now, we never mentioned the possibility of having

an upper bound of the type

λp(Ω) ≤ C

Rp
Ω

.

The reason is simple: such an estimate is indeed true and very simple to obtain in a

sharp form, without any assumption on the set Ω. Indeed, by definition of λp it is easy

to see that this is a monotone decreasing quantity, with respect to set inclusion. Thus, if

Ω ⊂ RN is an open set with RΩ < +∞, there exists a ball BRΩ
(ξ) ⊂ Ω and we have

λp(Ω) ≤ λp(BRΩ
(ξ)).

If we now use the scaling properties of λp, the previous can be rewritten as

λp(Ω) ≤ λp(B1(0))

Rp
Ω

.

Observe that this estimate is sharp, equality being (uniquely) attained by balls.

1.3. Plan of the paper. In Section 2 we introduce the notation used throughout the

whole paper and the technical facts needed to handle the proof of Theorem 1.1. Section

3 contains a rougher version of our main result, based on Hardy’s inequality for convex

sets. This is a sort of divertissement, that we think to be interesting in its own. The proof

of Theorem 1.1 is then contained in Section 4. We combine this result with a geometric

estimate, to obtain a further lower bound on λp of geometric nature: this is Section 5,

which also contains a lower bound on the Cheeger constant. Finally, in the last Section 6

we consider the same type of lower bound in terms of the inradius, with λp replaced by a

general Poincaré-Sobolev sharp constant. The paper ends with an open problem.

Acknowledgments. We thank Berardo Ruffini for some comments on a preliminary ver-

sion of this paper and for pointing out the reference [15]. We also thank Vladimir Bobkov

and Francesco Della Pietra for some useful bibliographical references. This paper evolved

from a set of hand-written notes for a talk delivered during the conferences “Variational
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and PDE problems in Geometric Analysis” and “Recent advances in Geometric Analy-

sis” held in June 2018 in Bologna and Pisa, respectively. The organizers Chiara Guidi &

Vittorio Martino and Andrea Malchiodi & Luciano Mari are kindly acknowledged.

2. Preliminaries

2.1. Notation. For an open set Ω ⊂ RN , we indicate by |Ω| its N−dimensional Lebesgue

measure. For an open bounded set Ω ⊂ RN with Lipschitz boundary, we define the

distance function

dΩ(x) = inf
y∈∂Ω
|x− y|, x ∈ Ω.

Then we recall that the inradius RΩ of Ω coincides with

RΩ = sup
x∈Ω

dΩ(x).

We will set νΩ(x) to be the outer normal versor at ∂Ω, whenever this is well-defined.

Definition 2.1. We say that Ω ⊂ RN is an open polyhedral convex set if there exists a

finite number of open half-spaces H1, . . . ,Hk ⊂ RN such that

Ω =
k⋂
i=1

Hi 6= ∅.

If Ω is an open polyhedral convex set, we say that F ⊂ ∂Ω is a face of Ω if the following

facts hold:

• F 6= ∅;

• F ⊂ ∂Hi, for some i = 1, . . . , k;

• for any E ⊂ ∂Ω ∩ ∂Hi such that F ⊂ E, we have E = F .

If Ω ⊂ RN is an open convex set with RΩ < +∞, we know that there exists ξ ∈ Ω such

that BRΩ
(ξ) ⊂ Ω. Accordingly, we define the contact set

CΩ,ξ = ∂Ω ∩ ∂BRΩ
(ξ).

Finally, we recall the definition

πp = inf
ϕ∈C1([0,1])\{0}

{
‖ϕ′‖Lp((0,1))

‖ϕ‖Lp((0,1))

: ϕ(0) = ϕ(1) = 0

}
.

It is not difficult to see that.
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2.2. A geometric lemma. The following geometric result is one of the building blocks of

the proof of Theorem 1.1. It is a higher-dimensional analogue of a simple two-dimensional

fact used by Hersch in [9]. This is the same as [4, Lemmas 5.2 & 5.3], to which we refer

for the proof.

Lemma 2.1. Let Ω ⊂ RN be an open bounded convex set. Let ξ ∈ Ω be such that

BRΩ
(ξ) ⊂ Ω. Then there exists m ≥ 2 and {P 1, . . . , Pm} ⊂ CΩ,ξ distinct points such that

the open polyhedral convex domain

T =
m⋂
i=1

{x ∈ RN : 〈x− P i, νΩ(P i)〉 < 0},

has the following properties:

• Ω ⊂ T ;

• RT = RΩ;

• every face of T touches ∂BRΩ
(ξ).

Remark 2.1. The previous result is similar to an analogous geometric lemma contained

in Protter’s paper, see [17, page 68]. Such a result in [17] is credited to a private commu-

nication by David Gale, without giving a proof. It should be noticed that the statement in

[17] is slightly more precise, since it is said that m can be chosen to be smaller than or

equal to N + 1. However, in the statement contained [17] the crucial feature that all the

faces of T touches the internal ball BRΩ
(ξ) seems to have been accidentally omitted. For

this reason we prefer to refer to the result proved in [4].

2.3. Eigenvalues of special sets.

Lemma 2.2 (Product sets). Let 1 < p < +∞ and k ∈ {1, . . . , N − 1}. We take the open

set Ω = RN−k × ω, with ω ⊂ Rk open bounded set. Then we have

λp(Ω) = λp(ω).

Proof. The proof is standard, we include it for completeness.

We use the notation (x, y) ∈ RN−k × Rk, for a point in RN . We first prove that

(5) λp(Ω) ≤ λp(ω).
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For every ε > 0, we take uε ∈ C∞0 (ω) to be an almost optimal function for the problem

on ω, i.e. ∫
ω

|∇yuε|p dy < λp(ω) + ε and

∫
ω

|uε|p dy = 1.

We take η ∈ C∞0 (R) such that

0 ≤ η ≤ 1, η ≡ 1 on

[
−1

2
,
1

2

]
, η ≡ 0 on R \ [−1, 1],

then for every R > 0, we choose

ϕ(x, y) = ηR(|x|)uε(y), where ηR(t) = R
k−N
p η

(
t

R

)
.

By using Fubini’s Theorem, we obtain

λp(Ω) ≤

∫
BR(0)

∫
ω

(
|∇xηR (|x|)|2 |uε(xN)|2 + |∇yuε(y)|2 ηR(|x|)2

) p
2 dx dy∫

BR(0)

ηR(|x|)p dx
,

where BR(0) = {x ∈ RN−k : |x| < R}. We now use the definition of ηR and the change

of variables x = Rx′, so to get

λp(Ω) ≤

∫
B1(0)

∫
ω

[
R

2
p

(k−N)−2 |η′(|x′|)|2 |uε(y)|2 +R
2
p

(k−N) |∇yuε(y)|2 |η(|x′|)|2
] p

2
RN−k dx′ dy∫

B1(0)

η(|x′|)p dx′

=

∫
B1(0)

∫ 1

0

[
1

R2
|η′(|x′|)|2 |uε(y)|2 + |∇yuε(y)|2 |η(|x′|)|2

] p
2

dx′ dy∫
B1(0)

η(|x′|)p dx′
.

By taking the limit as R goes to +∞ and using the Dominated Convergence Theorem,

from the previous estimate we get

λp(Ω) ≤

∫
B1(0)

∫
ω

|∇yuε(y)|p |η(|x′|)|p dx′ dy∫
B1(0)

η(|x′|)p dx′
=

∫ 1

0

|∇yuε|p dy < λp(ω) + ε.

The arbitrariness of ε > 0 implies (5).
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We now prove the reverse inequality

(6) λp(Ω) ≥ λp(ω).

For every ε > 0, we take ϕε ∈ C∞0 (Ω) \ {0} such that∫
Ω

|∇ϕε|p dx dy∫
Ω

|ϕε|p dx dy
< λp(Ω) + ε.

Observe that∫
Ω

|∇ϕε|p dx dy ≥
∫
RN−k

(∫
ω

|∇yϕε|p dy
)
dx

≥ λp(ω)

∫
RN−k

(∫
ω

|ϕε|p dy
)
dx = λp(ω)

∫
Ω

|ϕε|p dx dy,

where we used that y 7→ ϕε(x, y) is admissible for the one-dimensional problem, for every

x. We thus obtained

λp(ω) ≤ λp(Ω) + ε.

The arbitrariness of ε > 0 implies (6). �

The following technical result is the core of the proof of Theorem 1.1. It enables to

estimate from below an eigenvalue with mixed boundary conditions, when the set is a

“pyramid-like” one. We have to pay attention to possibly unbounded sets. In what

follows W 1,p(Ω) is the usual Sobolev space of Lp(Ω) functions, having their distributional

gradient in Lp(Ω), as well.

Lemma 2.3. Let Σ ⊂ RN−1 be an open polyhedral convex set. Let ξ = (ξ1, . . . , ξN) ∈ RN

be a point whose projection on RN−1 belongs to Σ and such that ξN > 0. We consider the

N−dimensional polyhedral convex set

T = convex hull
(
Σ ∪ {ξ}

)
,

and define

µ(T ) = inf
u∈C1(T )∩W 1,p(T )\{0}


∫
T

|∇u|p dx∫
T

|u|p dx
: u = 0 on Σ

 .
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Then we have

µ(T ) ≥
(πp

2

)p 1

(ξN)p
.

Proof. By recalling the definition of πp, we have that for a > 0 and for every ϕ ∈ C1([0, a])

such that ϕ(0) = 0 it holds

(7)

∫ a

0

|ϕ′(t)|p ≥
(πp

2

)p 1

ap

∫ a

0

|ϕ(t)|p dt,

see [2, Lemma A.1]. We now take a function u ∈ C1(T )∩W 1,p(T ) which is admissible for

the problem defining µ(T ). By hypothesis, there exists an affine function Ψ : Σ→ [0, ξN ]

such that

T =
{

(x′, xN) : RN−1 × R : x′ ∈ Σ, 0 < xN < Ψ(x′)
}
.

Thus by Fubini’s Theorem and (7) we have∫
T

|∇u|p dx ≥
∫
T

|uxN |p dx =

∫
Σ

(∫ Ψ(x′)

0

|uxN |p dxN

)
dx′

≥
∫

Σ

((πp
2

)p 1

Ψ(x′)p

∫ Ψ(x′)

0

|u|p dxN

)
dx′

≥
(πp

2

)p 1

ξpN

∫
Σ

(∫ Ψ(x′)

0

|u|p dxN

)
dx′ =

(πp
2

)p 1

ξpN

∫
T

|u|p dx.

By taking the infimum over admissible functions u, we get the desired conclusion. �

3. A divertissement on Hardy’s inequality

Before proving the sharp estimate à la Hersch-Protter (4), we present a rougher esti-

mate. This is a consequence of Hardy’s inequality for convex sets. Even if the resulting

estimate is not sharp, we believe that the proof has its own interest and we reproduce it

for the reader’s convenience.

Proposition 3.1. Let 1 < p < +∞ and let Ω ⊂ RN be an open bounded convex set. Then

we have (
p− 1

p

)p
1

Rp
Ω

≤ λp(Ω).
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Proof. We recall that the following Hardy’s inequality holds for a convex set

(8)

(
p− 1

p

)p ∫
Ω

∣∣∣∣ udΩ

∣∣∣∣p dx ≤ ∫
Ω

|∇u|p dx, for every u ∈ C∞0 (Ω).

By using this inequality, it is easy to obtain the claimed estimate. Indeed, by recalling

that

RΩ = ‖dΩ‖L∞(Ω),

from (8) we get (
p− 1

p

)p
1

Rp
Ω

∫
Ω

|u|p dx ≤
∫

Ω

|∇u|p dx.

By taking the infimum over admissible test functions, we finally obtain the lower bound

on λp(Ω).

For completeness, we now recall how to prove (8). Let us consider the distance function

dΩ(x) = min
y∈∂Ω
|x− y|, x ∈ Ω.

This is a 1−Lipschitz function, which is concave on Ω, due to the convexity of Ω. This

implies that dΩ is weakly superharmonic on Ω, i.e.∫
Ω

〈∇dΩ,∇ϕ〉 dx ≥ 0,

for every nonnegative ϕ ∈ C∞0 (Ω). By observing that

(9) |∇dΩ| = 1, almost everywhere in Ω,

from the previous inequality we also get

(10)

∫
Ω

〈|∇dΩ|p−2∇dΩ,∇ϕ〉 dx ≥ 0,

for every nonnegative ϕ ∈ C∞0 (Ω), i.e. dΩ is weakly p−superharmonic as well. By a

standard density argument, we easily see that we can enlarge the class of test functions

up to nonnegative ϕ ∈ W 1,p
0 (Ω), i.e. the closure of C∞0 (Ω) in W 1,p(Ω).

We now insert in (10) the test function

ϕ =
|u|p

(dΩ + ε)p−1
,
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where u ∈ C∞0 (Ω) and ε > 0. We thus obtain

0 ≤ −(p− 1)

∫
Ω

∣∣∣∣ ∇dΩ

dΩ + ε

∣∣∣∣p |u|p dx+ p

∫
Ω

〈
|∇dΩ|p−2∇dΩ

(dΩ + ε)p−1
,∇u

〉
|u|p−2 u dx.

that is ∫
Ω

∣∣∣∣ ∇dΩ

dΩ + ε

∣∣∣∣p |u|p dx ≤ p

p− 1

∫
Ω

∣∣∣∣〈 |∇dΩ|p−2∇dΩ

(dΩ + ε)p−1
,∇u

〉∣∣∣∣ |u|p−1 dx.

We can now use Young’s inequality in the following form

|〈a, b〉| ≤ δ
p− 1

p
|a|

p
p−1 +

δ1−p

p
|b|p, for a, b ∈ RN , δ > 0.

This yields ∫
Ω

∣∣∣∣ ∇dΩ

dΩ + ε

∣∣∣∣p |u|p dx ≤ δ

∫
Ω

∣∣∣∣ ∇dΩ

dΩ + ε

∣∣∣∣p |u|p dx+
δ1−p

p− 1

∫
Ω

|∇u|p dx,

which can be recast into

(p− 1) δp−1 (1− δ)
∫

Ω

∣∣∣∣ ∇dΩ

dΩ + ε

∣∣∣∣p |u|p dx ≤ ∫
Ω

|∇u|p dx.

Finally, we observe that the quantity δp−1 (1− δ) is maximal for

δ =
p− 1

p
,

thus by taking the limit as ε goes to 0 and recalling (9), by Fatou’s Lemma we end up

with (8), as desired. �

Remark 3.1. We observe that the boundedness of Ω can be dropped, both in (8) and in

the lower bound on λp(Ω). We also point out that, even if the constant(
p− 1

p

)p
,

is not sharp, it only depends on p, just like the sharp one.

4. Proof of Theorem 1.1

We start with a particular case of Theorem 1.1, when the convex set is polyhedral. Its

proof heavily relies on Lemma 2.3.
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Figure 1. The construction for the proof of Proposition 4.1, when N = 2

and T has j = 3 faces.

Figure 2. The construction for the proof of Proposition 4.1, when N = 3

and T is an unbounded set with j = 3 faces. In this case, the subsets

T1, T2, T3 (not drawn in the picture) are unbounded, as well.

Proposition 4.1. Let 1 < p < +∞ and let T ⊂ RN be an open polyhedral convex set.

We suppose that RT < +∞ and we assume further that there exists a ball B ⊂ T with

radius RT and such that each face of T touches B. Then we have

λp(T ) ≥
(πp

2

)p 1

Rp
T

.

Proof. Let us indicate by F1, . . . , Fj ⊂ ∂T the faces of T . We take the center ξ of B and

then define

Ti = convex hull
(
Fi ∪ {ξ}

)
, i = 1, . . . , j,

see Figures 1 and 2. We now consider Ti for a fixed i = 1, . . . , j and estimate from below
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µi = inf
u∈C1(Ti)∩W 1,p(Ti)\{0}


∫
Ti

|∇u|p dx∫
Ti

|u|p dx
: u = 0 on Fi

 .

Up to a rigid motion, we can assume that Ti satisfies the assumptions of Lemma 2.3.

Observe that in this case, we have

ξN = RT ,

by construction. Thus Lemma 2.3 entails

(11) µi ≥
(πp

2

)p 1

(ξN)p
=
(πp

2

)p 1

Rp
T

.

On the other hand, for every ε > 0, we take ϕε ∈ C∞0 (T ) \ {0} such that

λp(T ) ≤

∫
T

|∇ϕε|p dx∫
T

|ϕε|p dx
≤ λp(T ) + ε.

We observe that the restriction of ϕε to each Ti is admissible for the problem defining µi.

Then, we obtain

λp(T ) + ε ≥

∫
T

|∇ϕε|p dx∫
T

|ϕε|p dx
=

j∑
i=1

∫
Ti

|∇ϕε|p dx

j∑
i=1

∫
Ti

|ϕε|p dx

≥

j∑
i=1

µi

∫
Ti

|ϕε|p dx

j∑
i=1

∫
T

|ϕε|p dx

≥ min
i=1,...,j

µi.

By recalling the lower bound (11), we get the the desired conclusion, thanks to the

arbitrariness of ε > 0. �

We eventually come to the proof of Theorem 1.1.

Proof of Theorem 1.1. We first prove the inequality and then analyze the equality cases.

Part 1: proof of the inequality. Let us first assume that Ω is bounded. By appealing

to Lemma 2.1, we know that there exists T ⊂ RN an open polyhedral convex set such

that

Ω ⊂ T and RΩ = RT .
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Moreover, each face of T touches a maximal ball BRΩ
(ξ). By applying Proposition 4.1 to

the set T , we get

λp(Ω) ≥ λp(T ) ≥
(πp

2

)p 1

Rp
T

=
(πp

2

)p 1

Rp
Ω

.

This concludes the proof, in the case Ω is bounded.

If Ω in unbounded, we can suppose that RΩ < +∞, otherwise there is nothing to prove.

Then we can consider the bounded set ΩR = Ω ∩BR(0) for R large enough. By applying

λp(ΩR) ≥
(πp

2

)p 1

Rp
ΩR

,

and taking on both sides the limit as R goes to +∞, we get the conclusion.

Part 2: sharpness of the inequality. It is easy to see that equality is attained on a

slab. Indeed, by Lemma 2.2 we have

λp(RN−1 × (0, 1)) = λp((0, 1)) =
(
πp

)p
and RRN−1×(0,1) =

1

2
.

As for the “collapsing pyramids”

Cα = convex hull
(

(−1, 1)N−1 ∪ {(0, . . . , 0, α)}
)
,

we are going to use a purely variational argument, thus we do not need the explicit

determination of λp for these sets. We first observe that

Cα ⊂ RN−1 × (0, α),

thus we have

λp(Cα) ≥ λp(RN−1 × (0, α)) =
(πp
α

)p
.

In order to prove the reverse estimate, we observe that for 0 < α < 1

Qα :=
(
− (1−

√
α), 1−

√
α
)N−1

×
(

0, α (1−
√
α)
)
⊂ Cα,

thus by monotonicity and scaling

λp(Cα) ≤ λp(Qα) =
(
α (1−

√
α)
)−p

λp

((
− 1

α
,

1

α

)N−1

× (0, 1)

)
.

By observing that

lim
α→0+

λp

((
− 1

α
,

1

α

)N−1

× (0, 1)

)
= λp(RN−1 × (0, 1)) =

(
πp

)p
,
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we thus get that

λp(Qα) ∼
(πp
α

)p
, for α→ 0+.

In conclusion, we obtained that

lim
α→0+

αp λp(Cα) =
(
πp

)p
.

We are left with observing that

RCα =
α

1 +
√

1 + α2
∼ α

2
, for α→ 0+.

This concludes the proof of the optimality of the sequence {Cα}α.

Finally, we observe that for the sets

RN−k × Cα, for N ≥ 3 and 2 ≤ k ≤ N − 1,

it is sufficient to use the computations above and the fact that by Lemma 2.2

λp(RN−k × Cα) = λp(Cα),

together with RRN−k×Cα = RCα . �

Remark 4.1. By comparing the sharp estimate (3) with the estimate of Proposition 3.1,

we get
πp
2
>
p− 1

p
.

By recalling (??), we have that both sides converge to 1, as p goes to +∞. This shows that

even if the estimate of Proposition 3.1 is not sharp for every finite p, it is “asymptotically”

optimal for p→ +∞.

5. A further lower bound

It what follows, we will use the notation P (Ω) to denote the distributional perimeter

of a set Ω ⊂ RN . On convex sets, this coincides with the (N − 1)−dimensional Hausdorff

measure of the boundary.

We recall that for bounded convex sets, it is possible to bound λp(Ω) from above in

terms of the isoperimetric–type ratio

P (Ω)

|Ω|
.
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Namely, we have

λp(Ω) <
(πp

2

)p (P (Ω)

|Ω|

)p
,

see [2, Main Theorem] and [7, Theorem 4.1]. The inequality is strict and the estimate is

sharp.

As a straightforward consequence of Theorem 1.1, we get that the previous estimate can

be reverted. Thus

λp(Ω) and

(
P (Ω)

|Ω|

)p
,

are equivalent quantities on open bounded convex sets. For N = p = 2, this result is due

to Makai, see [13]. For all the other cases, to the best of our knowledge it is new.

Corollary 5.1. Let 1 < p < +∞ and let Ω ⊂ RN be an open bounded convex set. Then

we have

(12) λp(Ω) ≥
( πp

2N

)p (P (Ω)

|Ω|

)p
.

The inequality is sharp, equality being attained asymptotically by the sequence of “collaps-

ing pyramids” of Theorem 1.1.

Proof. In order to prove (12), it is sufficient to recall that for an open bounded convex

set, we have the sharp estimate (see for example [2, Lemma B.1])

(13)
RΩ

N
≤ |Ω|
P (Ω)

.

By inserting this in (4), we get the claimed estimate.

We now come to the sharpness issue. Observe that (12) has been obtained by joining the

two inequalities (4) and (13). We already know that the family of “collapsing pyramids”

is asymptotically optimal for the first one, thus we only need to verify that the same

family is asymptotically optimal for (13), as well. Let us set as before

Cα = convex hull

((
− 1, 1

)N−1

∪ {(0, , . . . , 0, α)}
)
.

We recall that

RCα ∼
α

2
,
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while

|Cα| = 2N−1

∫ α

0

(
1− z

α

)N−1

dz =
α 2N−1

N
,

and

P (Cα) ∼ 2

∣∣∣∣(− 1, 1
)N−1

∣∣∣∣ = 2N .

Thus we get

|Cα|
P (Cα)

∼ α

2N
∼ RCα

N
, for α→ 0,

as desired. �

We recall the definition of Cheeger constant of an open bounded set Ω ⊂ RN , i.e.

h1(Ω) = inf
E⊂Ω

{
P (E)

|E|
: |E| > 0

}
.

Observe that if P (Ω) < +∞, then Ω itself is admissible in the previous variational prob-

lem. Thus we have the trivial estimate

P (Ω)

|Ω|
≥ h1(Ω).

For convex sets, this estimate can be reverted. Indeed, by recalling that (see [12, Corollary

6])

lim
p↘1

λp(Ω) = h1(Ω) and lim
p↘1

πp = π1 = 2,

if we take the limit as p goes to 1 in (12), we get the following

Corollary 5.2. Let 1 < p < +∞ and let Ω ⊂ RN be an open bounded convex set. Then

we have

h1(Ω) ≥ 1

N

P (Ω)

|Ω|
.

Remark 5.1 (The case p = +∞). The limit as p goes to +∞ of (12) is less interesting.

Indeed, by taking the p−th root on both sides and recalling that (see [10, Lemma 1.5])

lim
p→+∞

(
λp(Ω)

) 1
p

=
1

RΩ

,

from (12) we get again (13).
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6. More general principal frequencies

By appealing to its variational characterization, the first eigenvalue λp(Ω) is nothing

but the sharp constant for the Poincaré inequality

CΩ

∫
Ω

|u|p dx ≤
∫

Ω

|∇u|p dx, for every u ∈ C∞0 (Ω).

From a theoretical point of view, it is thus quite natural to consider more generally the

“principal frequencies”

λp,q(Ω) = inf
u∈C∞0 (Ω)\{0}

∫
Ω

|∇u|p dx(∫
Ω

|u|q dx
) p

q

, for q 6= p.

Of course, such a quantity is interesting only if q is such that 1 ≤ q < p∗, if p ≤ N,

1 ≤ q ≤ +∞, if p > N,
where p∗ =

N p

N − p
.

For p < N and q = p∗, the quantity λp,q(Ω) does not depend on Ω and is a universal

constant, coinciding with the sharp constant in the Sobolev inequality

C

(∫
RN
|u|p∗ dx

) p
p∗

≤
∫
RN
|∇u|p dx, for every u ∈ C∞0 (RN).

In this section, we briefly investigate the possibility to have a lower bound of the type

C

Rβ
Ω

≤ λp,q(Ω),

among convex sets, in this case as well. Observe that by scale invariance, the only possi-

bility for the exponent β is

β = −N + p+N
p

q
.

In the case q < p, such an estimate is not possible, as shown in the following

Proposition 6.1 (Sub-homogeneous case). Let 1 < p < +∞ and 1 ≤ q < p. Then

inf
{
R
N p

q
−N+p

Ω λp,q(Ω) : Ω ⊂ RNopen bounded convex set
}

= 0.
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Proof. By scale invariance, we can impose the further restriction that RΩ = 1. We recall

that for q < p we have

λp,q(Ω) > 0 ⇐⇒ the embedding D1,p
0 (Ω) ↪→ Lq(Ω) is compact,

see [3, Theorem 1.2]. We now observe that for the open convex set Ω = RN−1 × (−1, 1)

the embedding above can not be compact, due to the translation invariance of the set Ω

in the first N − 1 coordinate directions. Thus we get

λp,q(RN−1 × (−1, 1)) = 0.

By taking the sequence

ΩL =

(
−L

2
,
L

2

)N−1

× (−1, 1), L > 0,

and using that

lim
L→+∞

λp,q(ΩL) = λp,q(RN−1 × (−1, 1)),

we get the desired conclusion. �

Before analyzing the case q > p, we notice that for the case q < p, it is possible to have

a lower bound on λp,q in terms of an integral norm of the distance from the boundary. In

a sense, this is the natural counterpart of the Hersch-Protter estimate.

Proposition 6.2. Let 1 < p < +∞ and 1 ≤ q < p. Then for every Ω ⊂ RN open bounded

convex set, we have

(14) λp,q(Ω) ≥
(
p− 1

p

)p
1(∫

Ω

d
p q
p−q
Ω dx

) p−q
q

.

Proof. We observe that by Hölder inequality, for every u ∈ C∞0 (Ω) we have∫
Ω

|u|q dx ≤
(∫

Ω

∣∣∣∣ udΩ

∣∣∣∣p dx)
q
p
(∫

Ω

d
p q
p−q
Ω dx

) p−q
p

.

By taking the power p/q on both sides and using Hardy’s inequality (8), we get(∫
Ω

|u|q dx
) p

q

≤
(

p

p− 1

)p ∫
Ω

|∇u|p dx
(∫

Ω

d
p q
p−q
Ω dx

) p−q
q

.

By taking the infimum over u ∈ C∞0 (Ω), we get the desired estimate. �
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On the contrary, for q > p it is possible to have a lower bound on λp,q in terms of the

inradius.

Proposition 6.3 (Super-homogeneous case). Let 1 < p <∞ and q > p such that q < p∗, if p ≤ N,

q ≤ +∞, if p > N.

Then there exists a constant C = C(N, p, q) > 0 such that for every Ω ⊂ RN open convex

set, we have

(15) λp,q(Ω) ≥ C

R
N p

q
−N+p

Ω

.

Proof. By using the classical Gagliardo-Nirenberg inequalities, we have for every u ∈

C∞0 (Ω)

(16)

(∫
Ω

|u|q dx
) p

q

≤ C

(∫
Ω

|u|p dx
)ϑ (∫

Ω

|∇u|p dx
)1−ϑ

,

where C = C(N, p, q) > 0 and

ϑ =
N

q
− N

p
+ 1.

For every ε > 0, we take ϕ ∈ C∞0 (Ω) such that

λp,q(Ω) + ε >

∫
Ω

|∇ϕ|p dx(∫
Ω

|ϕ|q dx
) p

q

.

By using (16) to estimate the denominator, we end up with

λp,q(Ω) + ε >


∫

Ω

|∇ϕ|p dx∫
Ω

|ϕ|p dx


ϑ

≥
(
λp(Ω)

)ϑ
.

If we now use Theorem 1.1 and recall the definition of ϑ, we get the desired conclusion. �

The previous proofs very likely do not produce the sharp constants in (14) and (15).

Moreover, in the case q > p the Hersch’s argument used for the case p = q does not seem

to work. Thus, we leave an open problem, which is quite interesting in our opinion.
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Open problems 1. Find the sharp constants in estimates (14) and (15), among open

bounded convex sets.

References
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