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Abstract. We prove a local boundedness result for local minimizers of a class of non-

convex functionals, under special structure assumptions on the energy density. The proof

follows the lines of that in [10], where a similar result is proved under slightly stronger

assumptions on the energy density.

Sunto. Dimostriamo un risultato di limitatezza locale per minimi locali di una classe

di funzionali non convessi, con particolari ipotesi di struttura sulla densità di energia.

La dimostrazione procede come quella in [10], dove un risultato simile è dimostrato con

ipotesi leggermente più forti sulla densità di energia.
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1. Introduction

In this paper we consider a class of variational integrals

(1) F(u,Ω) =

∫
Ω

f(x,Du) dx

where Ω ⊂ Rn is an open bounded set, u : Ω ⊂ Rn → Rm is a vector-valued map (i.e.,

m > 1) and Du is the m× n Jacobian matrix of its partial derivatives

u ≡
(
u1, u2, . . . , um

)
, Du =

(
∂uα

∂xi

)α=1,2,...,m

i=1,2,...,n

.
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The integrand f : Ω × Rm×n → [0,∞) is a Carathéodory function, ξ 7→ f(x, ξ) has a

polynomial growth and is possibly non-convex with respect to ξ. The local boundedness

of local minimizers will be considered.

1.1. “Weak convexity”. The lack of convexity of the energy density f is relevant in the

vectorial case (m > 1). Indeed the convexity condition is a reasonable assumption in the

scalar case (m = 1), but not in the vectorial case. Two justifications of this fact are the

following.

– The direct method in calculus of variations to prove the existence of a minimizer of

F in a suitable class X (usually a subspace of a Sobolev space, e.g. W 1,p
0 (Ω)) relies on

the Weierstrass Theorem and require two properties:

(a) the existence of a convergent minimizing sequence of F in X

(b) the sequential lower semicontinuity of the functional F .

It is well known that in the scalar case (i.e. m = 1) the sequential lower semicontinuity

of the functional F is essentially equivalent to the convexity of f with respect to gradient

variable, see [19]. In the vectorial case, this equivalence does not hold true anymore: the

convexity of f with respect to gradient variable implies (b), but the reverse implication

does not hold in general. As it was proved by Morrey 1952 [28], Meyers 1965 [27] and,

in full generality, by Acerbi-Fusco 1984 [1] (see also Marcellini 1985 [26]) the sequential

lower semicontinuity of the functional F is equivalent to the quasi-convexity of z 7→ f(x, z).

The quasi-convexity is a weaker property than the convexity and it says that any linear

function furnishes the absolute minimum among all Lipschitzian functions coinciding with

it on the boundary. Precisely, its definition is the following:

a Carathéodory function f : Ω × Rm×n → R, f(x, ·) locally integrable, is quasi-convex

(in Morrey’s sense) if

(2) Ln(Ω)f(x, ξ) ≤
∫

Ω

f (x, ξ +Dϕ(y)) dy,

for every ξ ∈ Rm×n, ϕ ∈ C∞c (Ω,Rm), and for Ln a.e. x ∈ Ω.

– The second motivation to study non-convex integrands f comes by the applications to

nonlinear elasticity. In a model in nonlinear elasticity, the stored energy of an elastic body

occupying in a reference configuration the bounded domain Ω ⊂ R3 is expressed by the
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functional (1), where u : Ω→ R3 is the displacement. J. Ball in 1977 pointed out in [2] that

the convexity of f with respect to Du conflicts, for instance, with the natural requirement

that the elastic energy is frame-indifferent. In this setting the convexity is usually replaced

by the polyconvexity assumption, a weaker assumption than the convexity. In the general

case:

a Carathéodory function f : Ω × Rm×n → R is polyconvex if there exists a function

g : Ω× Rτ → R, with g(x, ·) convex for Ln a.e. x ∈ Ω, such that

(3) f(x, ξ) = g
(
x, T (ξ)

)
.

In the last item we have adopted the standard notation

T (ξ) =
(
ξ, adj2ξ, . . . , adjiξ, . . . , adjm∧nξ

)
.

where adjiξ is the adjugate matrix of order i ∈ {2, . . . ,m ∧ n} of the matrix ξ ∈ Rm×n,

that is the
(
m
i

)
×
(
n
i

)
matrix of all minors of order i of ξ. Thus T (ξ) is a vector in Rτ ,

with

τ =
m∧n∑
i=1

(
m

i

)(
n

i

)
.

If n = m = 3, as we will consider in this note, a polyconvex function f is in the form

f(x, ξ) := g(x, ξ, adj2 ξ, det ξ), g(x, ·, ·, ·) convex.

Notice that polyconvexity is implied by the convexity, but it is easy to find examples

of polyconvex, non-convex functions: for instance f(ξ) = det ξ or f(ξ) = | det ξ|.

We recall here also the definition of rank-one convexity, another way to be “weakly

convex”:

a Carathéodory function f : Ω× Rm×n → R is rank-one convex if for all λ ∈ [0, 1] and

for all ξ, η ∈ Rm×n with rank(ξ − η) ≤ 1

(4) f(x, λξ + (1− λ)η) ≤ λf(x, ξ) + (1− λ)f(x, η)

for Ln a.e. x ∈ Ω.
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It can be proved that

f convex =⇒ f polyconvex =⇒ f quasiconvex =⇒ f rank-one convex.

As it immediately follows by the definition of rank-one convexity, all these implications

are equivalences if m = 1. On the other hand, none of the previous implications can be

reversed except for some particular cases. We refer to the monograph by Dacorogna [11]

for more properties and results on these “weak” convexity properties.

1.2. Partial regularity vs Everywhere regularity. The celebrated regularity result

for elliptic equations proved by De Giorgi [13] in 1957 states that, given a second order

linear elliptic equation
n∑
i=1

∂

∂xi

(
n∑
j=1

aij (x) uxj

)
= 0,

with essentially bounded measurable coefficients aij satisfying

n∑
i,j=1

aij(x)ξiξj ≥ ν|ξ|2 ∀ξ ∈ Rn

for some ν > 0, then the W 1,2-weak solutions are Hölder continuous. The method used

by De Giorgi is a very powerful one and it was a breakthrough in the study of regularity.

The proof of the fundamental result of De Giorgi relies on a sophisticated application of

the maximum principle. The first step is the proof of Caccioppoli-type inequalities for

the weak solution u on its super-(sub-)level sets, that is estimates of integrals of Du with

integrals of u on level sets of the form:∫
Ak,ρ

|Du|p dx ≤ c

(R− ρ)p

∫
Ak,R

(u− k)p dx, 0 < ρ < R

where Ak,s = {x ∈ Bs : u(x) ≥ k}.

This step of course requires u to be a scalar valued function and it is based on the

truncation of the solution. As many counterexamples show, starting by the famous exam-

ple by De Giorgi 1968 [14], weak solutions to nonlinear elliptic systems or vector valued

minimizers of integrals may be irregular, even unbounded. Therefore, motivated by these

counterexamples, we find in the mathematical literature two directions of research in reg-

ularity of generalized solutions of elliptic systems or of vectorial minimizers of integrals:
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• partial regularity : i.e., regularity in an open set Ω0 ⊆ Ω, meas(Ω \ Ω0) = 0,

• regularity in the interior of Ω, under suitable structure assumptions and/or as-

suming apriori some regularity (e.g. the local boundedness).

Roughly, a typical condition that forces the regularity is the dependence of the opera-

tor/functional on the modulus of the gradient, see the pioneering result by Uhlenbeck

[31].

For the polyconvex case, only few everywhere regularity results are available; we men-

tion here those by Fusco and Hutchinson in [16], where the everywhere continuity is proved

and Fuchs and Seregin [15] and [7] where Hölder continuity is discussed. Global pointwise

bounds are in [20], [12], [24], [25], [22], [23]. Interesting results are contained in [30], [3],

[4], [5], [6]; see also [21] and [18].

1.3. Our result. We consider Ω ⊆ R3 open set, a function f : Ω×R3×3 → [0,+∞), and

the functional

F(u) :=

∫
Ω

f(x,Du(x)) dx

where u : Ω ⊆ R3 → R3,

Du :=


Du1

Du2

Du3

 =



u1
x1

u1
x2

u1
x3

u2
x1

u2
x2

u2
x3

u3
x1

u3
x2

u3
x3


.

We assume that there exist Carathéodory functions Fα : Ω×R3 → [0,+∞), Gα : Ω×R3 →

[0,+∞), α ∈ {1, 2, 3}, and H : Ω× R→ [0,+∞), such that

λ→ Gα(x, λ), and t→ H(x, t) are convex,

with

(5) f(x, ξ) :=
3∑

α=1

{Fα(x, ξα) +Gα(x, (adj2 ξ)
α)}+H(x, det ξ).
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Here

ξ =


ξ1

1 ξ1
2 ξ1

3

ξ2
1 ξ2

2 ξ2
3

ξ3
1 ξ3

2 ξ3
3

 =


ξ1

ξ2

ξ3

 , ξα ∈ R3 for α ∈ {1, 2, 3}.

and adj2 ξ ∈ R3×3 denotes the adjugate matrix of order 2 whose components are

(adj2 ξ)γi = (−1)γ+i det

 ξαk ξαl

ξβk ξβl

 γ, i ∈ {1, 2, 3},

where α, β ∈ {1, 2, 3} \ {γ}, α < β, and k, l ∈ {1, 2, 3} \ {i}, k < l. Moreover,

(adj2 ξ)
α = ((adj2 ξ)α1, (adj2 ξ)α2, (adj2 ξ)α3).

A function u ∈ W 1,1
loc (Ω,R3) is a local minimizer of I if f(Du) ∈ L1

loc(Ω) and

F(u, suppϕ) ≤ F(u+ ϕ, suppϕ),

for all ϕ ∈ W 1,1(Ω,R3) with suppϕ ⊂⊂ Ω.

To have regular local minimizers some growth conditions have to be considered. We

assume that there exist exponents 1 < p ≤ 3, 1 < q, 1 ≤ r, constants k1, k3 > 0, k2 ≥ 0

and functions a, b, c : Ω→ [0,+∞) such that, for all α ∈ {1, 2, 3},

k1|λ|p − k2 ≤ Fα(x, λ) ≤ k3 (|λ|p + 1) + a(x) ∀λ ∈ R3(6)

k1 |λ|q − k2 ≤ Gα(x, λ) ≤ k3 (|λ|q + 1) + b(x) ∀λ ∈ R3(7)

0 ≤ H(x, t) ≤ k3 (|t|r + 1) + c(x) ∀t ∈ R(8)

where a, b, c ∈ Lσ(Ω), σ > 1.

Our main result is the following.

Theorem 1.1. Let f satisfy (5) and growth conditions (6), (7), (8), with 1 ≤ r < q <

p ≤ 3. Assume

(9)
p

p∗
< min

{
1− qp∗

p(p∗ − q)
, 1− rp∗

q(p∗ − r)
, 1− 1

σ

}
,

where p∗ = 3p
3−p , if p < 3, and, if p = 3, then p∗ is any ν > 3.

Then all the local minimizers u ∈ W 1,p
loc (Ω;R3) of I are locally bounded.
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Remark 1.1. If σ = ∞ then 1
σ

must be read as 0. Moreover, we remark that if p = 3,

then p∗ can be chosen large enough so that (9) is implied by the assumptions 1 ≤ r < q < p

and σ > 1.

Remark 1.2. As an application of Theorem 1.1, let us consider the functional (1) with

f(Du) :=
3∑

α=1

(
|Duα|14/5 + | adj2Du

α|2
)

+ | detDu|3/2.

By Theorem 1.1 every local minimizer u : Ω ⊂ R3 → R3 of I is locally bounded. Note

that the existence of a minimizer of I in ū + W
1, 14

5
0 (Ω), with ū ∈ W 1, 14

5 (Ω), comes from

Remark 8.32 in [11].

An analogous result has been proved in [10], but assuming that λ 7→ Fα(x, λ) are convex

functions for every α. Here we improve that result, by removing this convexity hypothesis,

by using the same argument used in the recent [9], based on the hole-filling method. We

remark that a result, similar to the one in [10], was proved in [8] for functionals satisfying

different structure assumptions, see the Appendix.

In [9] the Hölder continuity has been proved for minimizers of functionals with special

classes of rank-one convex or polyconvex functions.

The main novelty of the result in [10] is the strategy used to obtain the regularity result.

Indeed we prove the local boundedness of vector valued minimizers u = (u1, u2, u3) by

employing De Giorgi’s iteration method, used until now only in the scalar case. Indeed,

we first show that each component uα satisfies a Caccioppoli’s inequality (see Proposition

4.1); then we apply De Giorgi’s procedure, separately, to each uα.

Our paper is organized as follows. In the next section we present some preliminary

results used to prove Theorem 1.1. In Section 3 we provide a sketch of the proof of

Theorem 1.1. In the last Section, we give the proof of the Caccioppoli-type inequalities.

2. Technical results

The following lemma finds an important application in the hole-filling method. The

proof can be found for example in [19, Lemma 6.1] .
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Lemma 2.1. Let h : [r, R0] → R be a non-negative bounded function and 0 < ϑ < 1,

A,B ≥ 0 and β > 0. Assume that

h(s) ≤ ϑh(t) +
A

(t− s)β
+B,

for all r ≤ s < t ≤ R0. Then

h(r) ≤ cA

(R0 − r)β
+ cB,

where c = c(ϑ, β) > 0.

Given a vector v = (v1, · · · , vn) ∈ Rn we write |v| :=
√∑n

i=1 v
2
i . Analogously, given a

matrix A = (aij), i, j ∈ {1, · · · , n}, Ai is its i-th row and |A| :=
√∑n

i,j=1 a
2
ij.

Lemma 2.2 (Lemma 4.1 in [10]). Consider the matrices A,B ∈ R3×3

A =


A1

B2

B3

 , B =


B1

B2

B3

 .

Then the following estimates hold:

(a) |A| ≤ |A1|+ |B2|+ |B3|,

(b) | detA| ≤ |A1|| (adj2B)1 |,

(c) |(adj2A)2j| ≤ |A1||B3| and |(adj2A)3j| ≤ |A1||B2|, for all j ∈ {1, 2, 3}.

3. Sketch of the proof of Theorem 1.1

We now provide a sketch of the proof of Theorem 1.1. For a local minimizer u =

(u1, u2, u3) we will prove that each component is locally bounded. In the following we

consider the first component u1. We can argue similarly for the other components u2, u3.

STEP 1. Caccioppoli inequality for u1. We use the minimality condition with a suitable

test function; such a test function and the particular structure (5) of the density f guar-

antee a Caccioppoli inequality for u1 on every superlevel set {u1 > k}. More precisely,

fixed x0 ∈ Ω and a ball BR0(x0) ⊂⊂ Ω (we will not write the center x0 if no confusion
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may arise) we have that there exists c > 0 such that for all s, t > 0, s < t ≤ R0,

(10)

∫
{u1>k}∩Bs

|Du1|p dx ≤ c

∫
{u1>k}∩Bt

(
u1 − k
t− s

)p∗
dx+ c|{u1 > k} ∩Bt|ϑ

with a suitable ϑ > 0. The Caccioppoli inequality (10) permits to apply the classical

methods to get the regularity in the scalar case. Observe that on the right hand side of

(10) we do not get the same exponent p as in the left hand side, but the larger p∗; it still

allows us to prove the local boundedness of u1, see also [17] and [29].

STEP 2. Decay of the “excess” on superlevel sets. For a suitable radius R < R0 and a

suitable level d, we define a sequence ρh of radii starting from R and decreasing to R
2

,

another sequence kh of levels starting from d
2

and increasing to d. We define the “excess”

on the superlevel set as follows

(11) Jh :=

∫
{u1>kh}∩Bρh

(
u1 − kh

)p∗
dx.

Note that Jh is a decreasing sequence. Using Sobolev inequality and Caccioppoli estimate

(10) we are able to show that

(12) Jh+1 ≤ cQhJ
ϑp∗/p
h

for some constants c,Q > 1.

STEP 3. Iteration. In the right hand side of (12) there is competition between the

increasing Qh and the decreasing J
ϑp∗/p
h ; if ϑp∗/p > 1 and the initial value J0 is small,

then

(13) Jh ≤ Q
−h

ϑp∗/p−1J0,

so that

(14) lim
h→+∞

Jh = 0,

which implies

(15) u1 ≤ d a. e. in BR/2.

Since assumption (9) guarantees ϑp∗/p > 1 we get (15). Lower bounds for u1 can be

obtained by showing that −u is a minimizer for a similar functional.
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4. Proof of the first step: the Caccioppoli inequalities

Once the Caccioppoli inequalities are proved, the remaining part (Steps 2-3 in the

previous section) of the proof of Theorem 1.1 is quite standard: for them, we refer to [10].

Here we limit ourselves to prove the Caccioppoli-type inequalities.

The particular structure (5) of the density f guarantees a Caccioppoli inequality for

any component uα of u on every superlevel set {uα > k}. In the next proposition we state

this result in the case of the first component u1.

Proposition 4.1. Let f be as in (5), satisfying the growth conditions (6), (7), (8), with

(16) q <
p∗p

p∗ + p
and r <

p∗q

p∗ + q
.

Let u ∈ W 1,p
loc (Ω;R3) be a local minimizer of I.

Let BR0(x0) ⊂⊂ Ω, |BR0| < 1, R0 < 1, and, fixed k ∈ R, denote

A1
k,τ := {x ∈ Bτ (x0) : u1(x) > k} 0 < τ ≤ R0.

Then there exists c > 0, independent of k, such that for every 0 < ρ < R ≤ R0.∫
A1
k,ρ

|Du1|p dx ≤ c

∫
A1
k,R

(
u1 − k
r − ρ

)p∗
dx

+ c

1 +

(∫
BR

(|Du2|+ |Du3|)p dx
) qp∗

(p∗−q)p

+

(∫
BR

∣∣(adj2Du)1
∣∣q dx) rp∗

(p∗−r)q

 |A1
k,R|ϑ

(17)

where ϑ := min{1− qp∗

p(p∗−q) , 1−
rp∗

q(p∗−r) , 1−
1
σ
}.

Proof. For the sake of simplicity we will give a proof assuming that the integrand function

f is independent on x, and, consequently, that a, b, c in (6), (7), (8) are equal to 0.

Let BR0(x0) ⊂⊂ Ω, |BR0| < 1, R0 < 1. Let ρ, s, t, R be such that ρ ≤ s < t ≤ R ≤ R0.

Consider a cut-off function η ∈ C∞0 (Bt) satisfying the following assumptions:

(18) 0 ≤ η ≤ 1, η ≡ 1 in Bs(x0), |Dη| ≤ 2

t− s
.

Fixed k ∈ R, define w ∈ W 1,p
loc (Ω;R3),

w1 := max(u1 − k, 0), w2 := 0, w3 := 0,
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and, for µ ≥ p∗,

ϕ := −ηµw,

that has support in Bt.

By the minimality of u, f(Du) ∈ L1(Bt). Let us prove that f(Du+Dϕ) ∈ L1(Bt).

First, we notice that a.e. x in Ω \ ({η > 0} ∩ {u1 > k}) we have ϕ = 0, thus

(19) f(Du+Dϕ) = f(Du) a.e. in Ω \ ({η > 0} ∩ {u1 > k}).

Moreover, for a.e. x in {η > 0} ∩ {u1 > k}

(20) Du+Dϕ =


(1− ηµ)Du1 + µηµ−1(k − u1)Dη

Du2

Du3

 .

therefore

(21) F2((Du+Dϕ)2) = F2(Du2), F3((Du+Dϕ)3) = F3(Du3) a.e. in Ω.

Let us define the polyconvex function G,

(22) G(ξ) :=
3∑

α=1

Gα(adj2 ξ) +H(det ξ),

so

f(ξ) =
3∑

α=1

Fα(ξα) +G(ξ).

By (19), (21), and using Fα, G ≥ 0, α ∈ {1, 2, 3}, we have∫
Bt

f(Du+Dϕ) dx ≤
∫
Bt\({η>0}∩{u1>k})

f(Du) dx+

∫
Bt

F1((Du+Dϕ)1) dx

+

∫
Bt∩{η>0}∩{u1>k}

3∑
α=2

Fα(Duα) dx+

∫
Bt∩{η>0}∩{u1>k}

G(Du+Dϕ) dx

≤ 3

∫
Bt

f(Du) dx+

∫
Bt

F1((Du+Dϕ)1) dx+

∫
Bt∩{η>0}∩{u1>k}

G(Du+Dϕ) dx(23)
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The integral

∫
Bt

F1((Du + Dϕ)1) dx is finite. Indeed, by (20), the right inequality in (6)

and the convexity of t 7→ |t|p,∫
Bt

F1((Du+Dϕ)1) dx ≤
∫
Bt

k3(|(Du+Dϕ)1|p + 1) dx

≤ k3

∫
Bt

(
(1− ηµ)|Du1|p + |p(k − u1)Dη|p + 1)

)
dx

≤ c

∫
Bt

|Du1|p dx+ c

∫
Bt

((u1 − k
t− s

)p
+ 1
)
dx(24)

with c = c(k3, p). Since u ∈ W 1,p(Ω;R3) the right hand side is finite.

It remains to establish that

∫
Bt∩{η>0}∩{u1>k}

G(Du+Dϕ) dx is finite. We begin noting

that

(25) Du+Dϕ = (1− ηµ)Du+ ηµA, a.e. in Bt ∩ {η > 0} ∩ {u1 > k},

where

(26) A :=


µη−1(k − u1)Dη

Du2

Du3

 .

Since Du − A is a rank-one matrix and ξ 7→ det ξ and ξ 7→ adj2(ξ) are quasi-affine

functions, see [11], then

adj2(Du+Dϕ) = (1− ηµ) adj2Du+ ηµ adj2A,

and

det(Du+Dϕ) = (1− ηµ) detDu+ ηµ detA.

Therefore, by the polyconvexity of G,

(27) G(Du+Dϕ) ≤ (1− ηµ)G(Du) + ηµG(A) a.e. in {η > 0} ∩ {u1 > k},

so that∫
Bt∩{η>0}∩{u1>k}

G(Du+Dϕ) dx ≤
∫
Bt∩{η>0}∩{u1>k}

(
(1− ηµ)G(Du) + ηµG(A)

)
dx

≤
∫
Bt

f(Du) dx+

∫
A1
k,t

ηµG(A) dx,
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where in the last inequality we used Fα ≥ 0, α ∈ {1, 2, 3}. The first integral at right hand

side if finite. Let us consider the last one. Taking into account (26), we obtain

(28) G1((adj2A)1) = G1((adj2Du)1),

therefore, since G1 ≤ f ,∫
A1
k,t

ηµG(A) dx =

∫
A1
k,t

ηµ

(
G1((adj2Du)1) +

3∑
α=2

Gα((adj2A)α) +H(detA)

)
dx

≤
∫
Bt

f(Du) dx+

∫
A1
k,t

ηµ

(
3∑

α=2

Gα((adj2A)α) +H(detA)

)
dx.(29)

By (7) and Lemma 2.2-(c)

ηµ
3∑

α=2

Gα((adj2A)α) ≤ ηµk3

3∑
α=2

(|(adj2A)α|q + 1)

≤ cηµ + cµqηµ−q
(
u1 − k
t− s

)q
(|Du2|+ |Du3|)q.

The first inequality in (16) implies q < p∗. Using the Young inequality with exponents p∗

q

and p∗

p∗−q we get that, a.e. in A1
k,t,

cµqηµ−q
(
u1 − k
t− s

)q
(|Du2|+ |Du3|)q ≤ c

(
u1 − k
t− s

)p∗
+ c (|Du2|+ |Du3|)

qp∗
p∗−q .

We have so proved that∫
A1
k,t

ηµ
3∑

α=2

Gα((adj2A)α) dx ≤ c

∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗
+ (|Du2|+ |Du3|)

qp∗
p∗−q

}
dx.

By the first condition in (16), qp∗

p∗−q < p, therefore, by Hölder inequality,∫
A1
k,t

ηµ
3∑

α=2

Gα((adj2A)α) dx ≤ c

∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗}
dx

+ c

(∫
Bt

(|Du2|+ |Du3|)p dx
) qp∗

(p∗−q)p

|A1
k,t|

1− qp∗
p(p∗−q) .(30)

Let us now prove that
∫
A1
k,t
ηµH(detA) is finite. By (8) and computing detA with

respect to the first row (see Lemma 2.2-(b))

ηµH(detA) ≤ cηµ + cµrηµ−r
(
u1 − k
t− s

)r ∣∣(adj2Du)1
∣∣r .
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Notice that, by (16), r < p∗. By the Young inequality with exponents p∗

r
and p∗

p∗−r we get

cµrηµ−r
(
u1 − k
t− s

)r ∣∣(adj2Du)1
∣∣r ≤ c

(
u1 − k
t− s

)p∗
+ c
∣∣(adj2Du)1

∣∣ rp∗p∗−r .

Therefore

(31)

∫
A1
k,t

ηµH(detA) dx ≤ c

∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗
+
∣∣(adj2Du)1

∣∣ rp∗p∗−r

}
dx.

Taking into account that the second inequality in (16) is equivalent to rp∗

p∗−r < q, by Hölder

inequality we obtain∫
A1
k,t

∣∣(adj2Du)1
∣∣ rp∗p∗−r dx ≤

(∫
Bt

∣∣(adj2Du)1
∣∣q dx) rp∗

(p∗−r)q

|A1
k,t|

1− rp∗
q(p∗−r)

that, together with (31), implies∫
A1
k,t

ηµH(detA) dx ≤ c

∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗}
dx

+ c

(∫
Bt

∣∣(adj2Du)1
∣∣q dx) rp∗

(p∗−r)q

|A1
k,t|

1− rp∗
q(p∗−r) .(32)

Collecting (30) and (32) we get∫
A1
k,t∩{η>0}

ηµ

{
3∑

α=2

Gα((adj2A)α) +H(detA)

}
dx ≤ c

∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗}
dx

+ c


(∫

Bt

(|Du2|+ |Du3|)p dx
) qp∗

(p∗−q)p

+

(∫
Bt

∣∣(adj2Du)1
∣∣q dx) rp∗

(p∗−r)q

 |A1
k,t|ϑ,

(33)

where

ϑ := min

{
1− qp∗

p(p∗ − q)
, 1− rp∗

q(p∗ − r)

}
.

This inequality and (29) imply∫
A1
k,t

ηµG(A) dx ≤
∫
Bt

f(Du) dx+ c

∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗}
dx

+ c


(∫

Bt

(|Du2|+ |Du3|)p dx
) qp∗

(p∗−q)p

+

(∫
Bt

∣∣(adj2Du)1
∣∣q dx) rp∗

(p∗−r)q

 |A1
k,t|ϑ,(34)
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and the right hand side is finite, by the left inequalities in (6), (7) and the assumption

f(Du) ∈ L1(Bt). We have so proved that

∫
Bt∩{η>0}∩{u1>k}

G(Du+Dϕ) dx is finite. This

fact, together with the inequalities (23) and (24), gives f(Du+Dϕ) ∈ L1(Bt).

We can now turn to the proof of the Caccioppoli-type inequality (17). By definition of

local minimality of u, (19), (21) and (27) we have∫
A1
k,t∩{η>0}

f(Du) dx =

∫
A1
k,t∩{η>0}

F1(Du1) dx+

∫
A1
k,t∩{η>0}

(
3∑

α=2

Fα(Duα) +G(Du)

)
dx

≤
∫
A1
k,t∩{η>0}

F1((Du+Dϕ)1) dx+

∫
A1
k,t∩{η>0}

(
3∑

α=2

Fα(Duα) + (1− ηµ)G(Du) + ηµG(A)

)
dx.

The inequality above implies∫
A1
k,t∩{η>0}

F1(Du1) dx+

∫
A1
k,t∩{η>0}

ηµG(Du) dx

≤
∫
A1
k,t∩{η>0}

F1((Du+Dϕ)1) dx+

∫
A1
k,t∩{η>0}

ηµG(A) dx.

Taking into account the definition of G, see (22), and (28), we obtain∫
A1
k,t∩{η>0}

F1(Du1) dx+

∫
A1
k,t∩{η>0}

ηµ

{
3∑

α=2

Gα((adj2Du)α) +H(detDu)

}
dx

≤
∫
A1
k,t∩{η>0}

F1((Du+Dϕ)1) dx+

∫
A1
k,t∩{η>0}

ηµ

{
3∑

α=2

Gα((adj2A)α) +H(detA)

}
dx.

Since ∫
A1
k,t∩{η>0}

ηµ

{
3∑

α=2

Gα((adj2Du)α) +H(detDu)

}
dx ≥ 0,

we obtain ∫
A1
k,t∩{η>0}

F1(Du1) dx ≤
∫
A1
k,t∩{η>0}

F1((Du+Dϕ)1) dx

+

∫
A1
k,t∩{η>0}

ηµ

{
3∑

α=2

Gα((adj2A)α) +H(detA)

}
dx.(35)

By the left inequality in (6),

(36)

∫
A1
k,s

(k1|Du1|p − k2) dx ≤
∫
A1
k,t∩{η>0}

(k1|Du1|p − k2) dx ≤
∫
A1
k,t∩{η>0}

F1(Du1) dx.
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By the right inequality in (6), (25), the convexity of t 7→ |t|p and (18), we get∫
A1
k,t∩{η>0}

F1((Du+Dϕ)1) dx ≤
∫
A1
k,t∩{η>0}

k3(|(Du+Dϕ)1|p + 1) dx

≤ k3

∫
A1
k,t∩{η>0}

(
(1− ηµ)|Du1|p + |p(k − u1)Dη|p + 1)

)
dx

≤ c

∫
(A1
k,t\A

1
k,s)∩{η>0}

|Du1|p dx+ c

∫
A1
k,t∩{η>0}

((u1 − k
t− s

)p
+ 1
)
dx

≤ c

∫
A1
k,t\A

1
k,s

|Du1|p dx+ c

∫
A1
k,t

((u1 − k
t− s

)p∗
+ 1
)
dx(37)

with c = c(k3, p). Therefore, (35), (36), (37) and (33) imply

k1

∫
A1
k,s

|Du1|p dx ≤ c

∫
A1
k,t\A

1
k,s

|Du1|p dx+ c

∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗}
dx

+ c


(∫

BR

(|Du2|+ |Du3|)p dx
) qp∗

(p∗−q)p

+

(∫
BR

∣∣(adj2Du)1
∣∣q dx) rp∗

(p∗−r)q

 |A1
k,R|ϑ(38)

with c also depending on k2. By hole-filling, i.e. adding

c

∫
A1
k,s

|Du1|p dx

to both sides of (38) we obtain∫
A1
k,s

|Du1|p dx ≤ c

k1 + c

∫
A1
k,t

|Du1|p dx+
c

k1 + c

∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗}
dx

+
c

k1 + c


(∫

BR

(|Du2|+ |Du3|)p dx
) qp∗

(p∗−q)p

+

(∫
BR

∣∣(adj2Du)1
∣∣q dx) rp∗

(p∗−r)q

 |A1
k,R|ϑ.

Using Lemma 2.1 we obtain (17).

�

To conclude the proof, two more steps are necessary: a measure of the decay of the

“excess” on superlevel sets and an iteration asrgument. Since they are quite standard, we

refer to [10] for their description.

Remark 4.1. We proved Theorem 1.1 by assuming that the integrand function is in-

dipendent of x. In the general case, f depending on x and satisfying the general growth
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conditions (6)-(8), with a, b, c belonging to Lσ, σ > 1, the proof goes in a similar way,

with the additional condition 1− 1
σ
> p

p∗
.

5. Appendix

The functionals studied in [8] are
∫

Ω
f(x,Du) dx, with

(39) f(x, ξ) := F̃ (x, |ξ|2) + G̃(x, | adj2 ξ|2) + H̃(x, det ξ),

where F̃ : Ω× [0,+∞)→ [0,+∞), G̃ : Ω× [0,+∞)→ [0,+∞) and H̃ : Ω×R→ [0,+∞)

satisfy growth properties and some more assumptions. We exhibit here an example of an

energy density of type (5) (considered in [10] and in the present paper), that cannot be

expressed as in (39).

Lemma 5.1. We assume that F̃ , G̃ : [0,+∞) 7→ [0,+∞) and H̃ : R 7→ [0,+∞); let

p, q, r ∈ (0,+∞) with p 6= 2. Then, it is false that

(40)
3∑

α=1

|ξα|p +
3∑

α=1

|(adj2ξ)
α|q + | det ξ|r = F̃(|ξ|2) + G̃(|adj2ξ|2) + H̃(det ξ)

for every ξ ∈ R3×3.

Proof. We argue by contradiction: if (40) holds true, then we can use (40) with

(41) ξ =


0 0 0

0 0 0

0 0 0


and we get

(42) adj2ξ =


0 0 0

0 0 0

0 0 0

 ,

with det ξ = 0, so that

(43) 0 = F̃ (0) + G̃(0) + H̃(0);

we keep in mind that F̃ , G̃, H̃ ≥ 0 and we get

(44) F̃ (0) = G̃(0) = H̃(0) = 0.
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Now we use (40) with

(45) ξ =


t 0 0

0 0 0

0 0 0


and we get

(46) adj2ξ =


0 0 0

0 0 0

0 0 0

 ,

with det ξ = 0, so that

(47) |t|p = F̃ (t2) + G̃(0) + H̃(0);

we keep in mind (44) and we get

(48) F̃ (t2) = |t|p = (t2)p/2,

for every t ∈ R. Now we take

(49) ξ =


1 0 0

1 0 0

1 0 0


and we get

(50) adj2ξ =


0 0 0

0 0 0

0 0 0

 ,

with det ξ = 0, |ξ1| = 1 = |ξ2| = |ξ3|, |ξ|2 = 3 and (40) implies

(51) 3 = 3p/2;

such an equality is a contradiction, since p 6= 2. This ends the proof. �
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