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LA TECNICA DELLA FUNZIONE MASSIMALE SHARP NELLE
STIME A PRIORI W 2,p PER OPERATORI NON VARIAZIONALI

MARCO BRAMANTI

Abstract. We consider a nonvariational degenerate elliptic operator, structured on a

system of left invariant, 1-homogeneous, Hörmander vector fields on a Carnot group,

where the coefficient matrix is symmetric, uniformly positive on a bounded domain and

the coefficients are locally VMO. We discuss a new proof (given in [7] and also based

on results in [6]) of the interior estimates in Sobolev spaces, first proved in [2]. The

present proof extends to this context Krylov’ technique, introduced in [26], consisting in

estimating the sharp maximal function of second order derivatives.

Sunto. Si considera un operatore nonvariazionale ellittico degenere, strutturato su un

sistema di campi vettoriali di Hörmander, invarianti a sinistra e 1-omogenei su un gruppo

di Carnot, dove la matrice dei coefficienti è simmetrica, uniformemente positiva su un do-

minio limitato e i coefficienti sono localmente VMO. Si discute una nuova dimostrazione

(contenuta in [7] e basata anche su risultati in [6]) delle stime all’interno in spazi di

Sobolev, provate in [2]. La presente dimostrazione estende a questo contesto la tecnica

di Krylov, introdotta in [26], che consiste nello stimare la funzione massimale sharp delle

derivate del second’ordine.
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1. A priori estimates for nonvariational operators: a brief historical

survey

This paper is based on a talk given by the author in Bologna at the “Bruno Pini

Mathematical Analysis Seminar”, which in turn was based on the papers [7] and [6], and

aims to keep the informal, but, I hope, informative, style of the talk.

Let us consider linear uniformly elliptic operators in nondivergence form

Lu =
n∑

i,j=1

aij (x)uxixj

over a bounded and sufficiently smooth domain Ω ⊂ Rn, where

µ |ξ|2 6
n∑

i,j=1

aij (x) ξiξj 6 µ−1 |ξ|2

for a.e. x ∈ Ω, every ξ ∈ Rn and some positive constant µ. We look for strong solutions

to the Dirichlet problem  u ∈ W 2,p (Ω) ∩W 1,p
0 (Ω)

Lu = g a.e. in Ω

for an assigned g ∈ Lp (Ω), 1 < p <∞. The classical theory by Agmon-Douglis-Nirenberg

[1], 1959, ensures that if the coefficients aij are uniformly continuous then the problem is

well-posed in the above functional framework. In the special case n = 2 (and p = 2) it is

enough to assume aij ∈ L∞ (Ω) (Talenti, [34]), while for n > 2 classical examples by Pucci

(quoted by Talenti in [33], see also the book [35] by Maugeri, Palagachev, Softova) show

that as soon as the coefficients aij possess a discontinuity point, existence or uniqueness

of the solution may fail to be true. So, one can ask whether the continuity assumption on

the coefficients can be weakened, in dimension n > 2, keeping the well-posedness of the

problem. A first answer was given by Miranda [31], 1963, who assuming aij ∈ W 1,n ∩L∞

proved the solvability in W 2,2 (Ω) for g ∈ Lq (Ω) , q > 2. Almost 30 years later, Chiarenza-

Frasca-Longo [11], 1991, [12], 1993, assuming aij ∈ VMO∩L∞ proved the well-posedness

of the problem in W 2,p (Ω) for every p ∈ (1,∞). Recall that VMO, the space of functions

having vanishing mean oscillation, introduced by Sarason [32], is defined as

VMO =

{
a ∈ L1

loc : sup
ρ6r

sup
x

1

|Bρ (x)|

∫
Bρ(x)

|a (y)− aBr | dy → 0 for r → 0

}
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(with aB = 1
|B|

∫
B
a (x) dx). Since W 1,n ⊂ VMO, this theory significantly extends Mi-

randa’s result. Functions in VMO can present some kind of discontinuity, although they

cannot be, for instance, homogeneous of degree zere as the functions considered in Pucci’s

counterexamples are.

For future comparison, let us briefly sketch the technique that Chiarenza-Frasca-Longo

use in order to prove local estimates in W 2,p (estimates near the boundary require some

further ideas, that we are not going to discuss here). They start writing a representation

formula for second order derivatives of functions u ∈ C∞0 (Ω), namely

uxixj (x) = cij (x)Lu (x) +
n∑

h,k=1

PV

∫
[ahk (x)− ahk (y)] Γij (x, x− y)uyhyk (y) dy,

where Γ (x, ·) is the fundamental solution of the constant coefficient elliptic operator

obtained freezing the coefficients of L at the point x, Γij (x, y) = ∂2

∂yi∂yj
Γ (x, y), and cij (x)

are suitable bounded functions. In compact form, the above formula can be rewritten as

uxixj = cij · Lu+
n∑

h,k=1

[ahk, Tij]uxhxk ,

where every Tij is a Calderón-Zygmund operator “with variable kernel” and [ahk, Tij] is

its commutator with the multiplication operator for ahk. Expanding Γij (x, ·) in series of

spherical harmonics (according to a classical procedure introduced by Calderón-Zygmund,

[10]) every Tij and every commutator can be represented in terms of singular integrals

of convolution type. Then, Chiarenza-Frasca-Longo invoke a deep real analysis theorem

proved by Coifman-Rochberg-Weiss [14] ensuring that, for a classical Calderón-Zygmund

operator T of convolution type, and any function a ∈ BMO (Rn),

‖[a, T ] f‖p 6 c ‖a‖∗ ‖f‖p

for every p ∈ (1,∞), where ‖·‖∗ is the BMO seminorm:

‖a‖∗ = sup
x∈Rn,r>0

1

|Br (x)|

∫
Br(x)

|a (y)− aBr | dy.

This fact, together with Lp continuity of singular integrals and a suitable uniform control

over the coefficients in the expansion in series of spherical harmonics, gives an estimate
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of the kind ∥∥uxixj∥∥p 6 c ‖Lu‖p + c

n∑
h,k=1

‖ahk‖∗ ‖uxhxk‖p .

Exploiting the fact that VMO functions can be approximated in BMO seminorm

with uniformly continuous functions, the last estimate can be refined proving that, for

ahk ∈ VMO and every fixed ε > 0, there exists r > 0 such that for u ∈ C∞0 (Br),∥∥uxixj∥∥p 6 c ‖Lu‖p + ε

n∑
h,k=1

‖uxhxk‖p

which finally gives

‖uxhxk‖p 6 c ‖Lu‖p

for every u ∈ C∞0 (Br) with r small enough, and every p ∈ (1,∞). From this result, the

proof of interior W 2,p estimates of the kind

‖u‖W 2,p(Ω′) 6 c
{
‖Lu‖Lp(Ω) + ‖u‖Lp(Ω)

}
for Ω′ b Ω

is then a routine.

Note that if we knew the uniform continuity of the coefficients aij, as in the classi-

cal theory, then a much easier procedure would give the same result just exploiting Lp

continuity of singular integrals of convolution type.

The technique devised by Chiarenza-Frasca-Longo has been subsequently extended to

other nonvariational operators with VMO coefficients, for instance:

Parabolic equations: Bramanti-Cerutti, [4];

Systems of elliptic equations: Chiarenza-Franciosi-Frasca, [13];

Ultraparabolic equations of Kolmogorov-Fokker-Planck type: Bramanti-Cerutti-Manfredini,

[5];

Nonvariational equations structured on Hörmander vector fields: Bramanti-Brandolini

[2], [3], Bramanti-Zhu, [8].

While each of the above extensions poses some new problems, a common feature in

all these works is the heavy use of singular integral theory. In particular, one needs to

assure the Lp continuity of singular integrals and their commutators with BMO functions.

Moreover, the involved singular integrals are not of convolution type: instead, they need
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to be expanded in an infinite series of convolution-type singular integrals, which poses the

problem of getting some control on the coefficients in this expansion.

In 2007, Krylov [26] (see also [27] and the papers [22] by Kim-Krylov and [24] by

Kim) introduced a different technique to prove W 2,p a priori estimates for nonvariational

operators with VMO coefficients, getting similar results also under weaker assumptions.

Instead of expressing the second order derivatives uxixj in terms of singular integrals and

their commutators, a pointwise estimate is proved for the sharp maximal function of uxixj .

Recall that, for a locally integrable function f , the Hardy-Littlewood maximal function

Mf and the Fefferman-Stein sharp maximal function f# are defined as:

Mf (x) = sup
x�Br

1

|Br|

∫
Br

|f (y)| dy;(1)

f# (x) = sup
x�Br

1

|Br|

∫
Br

|f (y)− fBr | dy

and satisfy the well-known estimates:

(2) c1 ‖Mf‖Lp(Rn) 6 ‖f‖Lp(Rn) 6 c2

∥∥f#
∥∥
Lp(Rn)

for f ∈ Lp, 1 < p <∞.

Postponing for the moment a precise statement, let us just say that the key estimate in

[26] looks as follows: (
uxixj

)#
(x) 6 c (M (|Lu|α) (x))

1/α
+ (...)

for α ∈ (1,∞), where (...) contains some terms that in the subsequent Lp estimates can

be made small and taken to the left-hand side, under the assumption of VMO coefficients

and functions u supported in small balls. Actually, taking Lp norms in the last inequality

(after choosing 1 < α < p) and applying (2), we can get∥∥uxixj∥∥p 6 c ‖Lu‖p + ‖(...)‖p

and finally ∥∥uxixj∥∥p 6 c ‖Lu‖p ,

as desired. Exploiting this technique, in [26] and several subsequent papers, the Authors

prove W 2,p estimates for elliptic or parabolic operators having coefficients aij (x, t) which

belong to VMO with respect to the x-variable, and are merely L∞ in t, or VMO in space
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with respect to all but one variable, or other extensions of these results (a few more details

about these results will be given in the final section of this paper). See the papers [27],

[22], [24], [23], [29], [16], [17], [18] and the book [28].

The research program that we want to describe here can be stated as follows. We

want to investigate whether it is possible to adapt the above technique to nonvariational

operators structured on Hörmander vector fields, getting new results, or getting known

result with a shorter proof. So far, we have been able to achieve the second goal: in the

paper [7] by Bramanti-Toschi, we get W 2,p
X local estimates for operators

Lu =

q∑
i,j=1

aij (x)XiXju

structured on Hörmander vector fields on Carnot groups, with VMO coefficients aij; this

result was firstly established in [2]. In the present approach we do not directly exploit

Lp estimates on singular integrals or commutators of singular integrals, nor expansions

in series of spherical harmonics, but we use a local sharp maximal function, over local

homogeneous spaces, and the corresponding Lp estimate of Fefferman-Stein type, obtained

in [6] by Bramanti-Fanciullo.

The plan of the remaining parts of this paper is the following. After introducing,

in section 2, the necessary background on Hörmander vector fields and real analysis,

in section 3 we will describe the main result and the basic ideas of its proof. Finally,

in section 4 we will describe some of the existing results proved by this technique and

present some open problems, in the same line of the one discussed in the present paper.

2. The context. Hörmander vector fields on Carnot groups

Let us consider, in Rn, a family of q real and smooth vector fields

Xi =
n∑
j=1

bij (x) ∂xj , i = 1, 2, ..., q < n

and let us assume that they satisfy Hörmander’s condition in Rn, which means the fol-

lowing. Define the commutator of two vector fields X, Y as

[X, Y ] = XY − Y X.
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We assume that the system consisting in the vector fields Xi and their iterated commu-

tators [
Xi1 ,

[
Xi2 ,

[
...,
[
Xik−1

, Xik

]]]]
for k = 2, 3, ..., r

up to some step r, spans Rn at every point. Under these assumptions, Hörmander’s

theorem (see [20]) states that the operator

L =

q∑
i=1

X2
i

is hypoelliptic, that is for every distribution u in Ω and open set A ⊂ Ω, we have

Lu ∈ C∞ (A) =⇒ u ∈ C∞ (A). Note that the second order operator L has nonnega-

tive characteristic form but, as soon as q < n, is degenerate elliptic. This means that its

hypoellipticity is a nontrivial, highly informative regularizing property.

Example 2.1. In R3 3 (x, y, t), let

X = ∂x + 2y∂t

Y = ∂y − 2x∂t.

Then

[X, Y ] = −4∂t

and since the three vector fields X, Y, [X, Y ] are linearly independent at every point, the

second order differential operator

L = X2 + Y 2 = (∂x + 2y∂t)
2 + (∂y − 2x∂t)

2

= ∂2
x + ∂2

y + 4
(
x2 + y2

)
∂2
t + 4

(
y∂2

xt − x∂2
yt

)
is hypoelliptic.

A homogeneous group (in Rn) is a Lie group (Rn, ◦) (where we think ◦ as a “transla-

tion”), having 0 as its neutral element, endowed with a family {Dλ}λ>0 of group auto-

morphisms (“dilations”) acting as follows:

Dλ (x1, x2, ..., xn) = (λα1x1, λ
α2x2, ..., λ

αnxn)

for assigned integers 1 = α1 6 α2 6 ... 6 αn.
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We will denote this structure by G = (Rn, ◦, Dλ). The number

Q =
n∑
i=1

αi

is called homogeneous dimension of G.

Example 2.2 (The Heisenberg group Hn). In Rn+n+1 3 (x, y, t), let

(x, y, t) ◦ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ − 2 (x · y′ − x′ · y))

D (λ) (x, y, t) =
(
λx, λy, λ2t

)
.

With this structure, RN (with N = 2n+1) becomes a homogeneous group, of homogeneous

dimension Q = 2n+ 2. This group is denoted by Hn.

A differential operator P on a homogeneous group G is called:

left invariant if

P (Lyf) (x) = Ly (Pf (x)) ∀x, y ∈ Rn

for every smooth function f , where

Lyf (x) = f (y ◦ x) ;

homogeneous of degree α ∈ R (or α-homogeneous) if

P (f (D (λ)x)) = λα (Pf) (D (λ)x)

for every x ∈ G, λ > 0 and every smooth function f.

Let us denote by Xi (i = 1, 2, ..., n) the only left invariant vector field which agrees at

the origin with ∂xi .

We will assume that, for some integer q < n, the vector fields X1, X2, ..., Xq satisfy

Hörmander’s condition and are 1-homogeneous. Under these assumptions, G is called a

Carnot group and

L =

q∑
i=1

X2
i

is called the canonical sublaplacian over G. The operator L is hypoelliptic (by Hörman-

der’s theorem), 2-homogeneous and left invariant.
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Example 2.3 (The Kohn Laplacian on the Heisenberg group H1). The operator L de-

scribed in Example 2.1 is the canonical sublaplacian on the Heisenberg group H1 defined

in Example 2.2, since X, Y are 1-homogeneous, left invariant, agree at the origin with

∂x, ∂y respectively, and satisfy Hörmander’s condition.

In every Carnot group we can define (in several ways) a homogeneous norm ‖·‖ satisfying

the properties

‖D (λ)x‖ = λ ‖x‖ ∀x ∈ G, λ > 0

‖x ◦ y‖ 6 c (‖x‖+ ‖y‖) ;
∥∥x−1

∥∥ = ‖x‖ .

Then we can also define the (quasi)distance

d (x, y) =
∥∥y−1 ◦ x

∥∥ ,
and the corresponding balls Br (x), whose volume satisfy the simple condition |Br (x)| =

crQ. The space (Rn, d, dx) is a space of homogeneous type in the sense of Coifman-Weiss

[15]: it is a quasimetric measure space, satisfying the doubling condition for the volume

of balls. Therefore, the Hardy-Littlewood maximal function can be defined at the usual

way (as in (1)), and the maximal inequality holds:

‖Mf‖p 6 c ‖f‖p for 1 < p 6∞.

Recall that, in the applications to PDEs that we have in mind, we will work in a

bounded domain Ω. If we want to regard Ω as a metric (or quasimetric) space, its balls

are actually the sets Ω ∩ Br (x), so the application of the standard theory of spaces of

homogeneous type to bounded domains often requires to compute integrals over sets of

the kind Ω ∩ Br (x) or compare the volumes of these sets for different radii r. This can

be troublesome in the context of general Hörmander vector fields, therefore we prefer to

develop some real analysis machinery in the context of locally homogeneous spaces, in the

sense of Bramanti-Zhu [9].

In particular, as to the sharp maximal function, a local version of this concept and the

Fefferman-Stein-type Lp inequality have been given by Bramanti-Fanciullo in [6].
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Let us consider three bounded domains Ω0 b Ω′ b Ω′′ b Rn and, for every function

f ∈ L1
loc (Ω′′) and x ∈ Ω′, let

f#
Ω′,Ω′′ (x) = sup

B(x,r)3x
x∈Ω′,r6ε

1

|B (x, r)|

∫
B(x,r)

|f (y)− fB| dy.

Here the number ε > 0 is chosen small enough so that if x ∈ Ω′ and r 6 ε, then

B (x, r) ⊂ Ω′′. The result proved in [6] then reads as follows:

Theorem 2.1. For every R > 0 small enough, the domain Ω0 can be covered by balls

BR = B (xi, R) such that for every f supported in BR such that f ∈ L1 (BR) and
∫
BR
f =

0,

‖f‖Lp(BR) 6 c
∥∥∥f#

Ω′,Ω′′

∥∥∥
Lp(BγR)

(for some γ > 1, such that BγR ⊂ Ω′).

3. Main result and line of the proof

After these preliminaries we are now in position to state the main result proved in [7].

Let X1, ..., Xq be vector fields such that
∑q

i=1X
2
i is the canonical sublaplacian on a

Carnot group G in Rn, and for a bounded domain Ω ⊂ Rn let us consider the operator

Lu =

q∑
i,j=1

aij (x)XiXju,

where aij is a symmetric matrix of measurable functions satisfying

µ |ξ|2 6
q∑

i,j=1

aij (x) ξiξj 6 µ−1 |ξ|2

for some µ > 0, every ξ ∈ Rq and x ∈ Ω. Assume that aij ∈ VMOloc (Ω), that is: for

every Ω0 b Ω′ b Ω, letting

ηaij (r) = sup
x∈Ω0,ρ6r

1

|B (x, ρ)|

∫
B(x,ρ)

∣∣aij (y)− (aij)B
∣∣ dy

(where r is chosen small enough so that x ∈ Ω0, ρ 6 r =⇒ B (x, ρ) ⊂ Ω′) we have

ηaij (r)→ 0 as r → 0.

Then our main result is the following:
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Theorem 3.1. For every p ∈ (1,∞), the domain Ω0 can be covered by a finite number of

balls BR (xi) such that for every u ∈ C∞0 (BR (xi)) we have:

‖XiXju‖Lp 6 c ‖Lu‖Lp .

The above result is the key step in the proof of interior a priori estimates for functions

in W 2,p
X (Ω). As already said, this result was firstly proved in [2]; here we are presenting

the proof given in [7], making use of the sharp maximal function approach.

In the rest of this section we will illustrate the main steps of the proof of Theorem 3.1.

The reader is referred to [7] for details. In order to make more transparent the idea of

the proof, we will start illustrating the last step of the proof, and then we will proceed

backwards.

The key point is the proof of the following

Theorem 3.2. Let p, α, β ∈ (1,∞) with α−1 + β−1 = 1 and R ∈ (0, ε) (for a suitable ε

small enough). There exists c > 0, depending on p, α,G, µ, but not on R, such that for

every u ∈ C∞0 (BR), k ≥ 4Λ3 we have

(XhXlu)#
Ω′,Ω′′ (x) 6

c

k

q∑
i,j=1

M(XiXju) (x) + ck2+Q/p (M (|Lu|p) (x))1/p

+ ck2+Q/p
(
a]R

)1/βp
q∑

i,j=1

(M(|XiXju|pα) (x))1/αp

for h, l = 1, 2, ..., q, every x ∈ BR, where a]R = maxi,j=1,...,q ηaij (R) . The number Λ above

is a suitable constant depending on G, whose meaning will be explained later.

Let us show how the previous theorem implies the desired result (Theorem 3.1).

Applying Theorem 3.2 for suitable p, p1, α, β and the maximal inequality on M (|Lu|p)

we get:

q∑
i,j=1

∥∥∥(XiXju)#
Ω′,Ω′′

∥∥∥
Lp(BγR)

6
c

k

q∑
i,j=1

‖XiXju‖Lp(BR)

+ ck2+Q/p1

{
‖Lu‖Lp(BR) +

(
a]γR

)1/βp1
q∑

i,j=1

‖XiXju‖Lp(BR)

}
.(3)
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Since u ∈ C∞0 (BR), the derivatives XiXju have vanishing avarage, which enables us to

apply the sharp maximal inequality of Theorem 2.1, getting

q∑
i,j=1

‖XiXju‖Lp(BR) 6 c

q∑
i,j=1

∥∥∥(XiXju)#
Ω′,Ω′′

∥∥∥
Lp(BγR)

which combined with (3) for k large enough gives

q∑
i,j=1

‖XiXju‖Lp(BR) 6 c

{
‖Lu‖Lp(BR) +

(
a]γR

)1/βp1
q∑

i,j=1

‖XiXju‖Lp(BR)

}
.

IfR is small enough, and therefore a]γR is small enough, the quantity
∑q

i,j=1 ‖XiXju‖Lp(BR)

on the right hand side can be taken to the left hand side and we get the desired bound.

Next, let us discuss how Theorem 3.2 can be actually proved. In order to show how

(XiXju)# can be bound in terms of M(XiXju) and M(|Lu|p), one proves an estimate on

the corresponding constant coefficient operator :

Lu =

q∑
i,j=1

aijXiXju

where the constant matrix belongs to the same “ellipticity class” of {aij (x)}i,j:

µ |ξ|2 6
q∑

i,j=1

aijξiξj 6 µ−1 |ξ|2 .

In other words, the constant in the following bound will depend on the constant coefficients

aij only through the number µ. The result is the following:

Theorem 3.3. For every p ∈ (1,∞) there exists c > 0, depending on p,G, µ such that

for every k ≥ 4Λ3, r > 0, u ∈ C∞(Rn)

1

|Br|

∫
Br

|XiXju (x)− (XiXju)Br |dx

6
c

k

q∑
i,j=1

1

|Bkr|

∫
Bkr

|XiXju (x) |dx+ ck2+Q/p

(
1

|Bkr|

∫
Bkr

|Lu (x) |pdx
)1/p

.

(Λ > 1 is the same constant appearing in Theorem 3.2).
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Let us show how Theorem 3.3 implies Theorem 3.2. This is a key point in the general

strategy, where the role of constant coefficient operators in this technique appears.

We want to show that for every u ∈ C∞0 (BR), x ∈ BγR and k large enough,

(XiXju)#
Ω′,Ω′′ (x) 6

c

k

q∑
i,j=1

M(XiXju) (x) + ck2+Q/p (M(|Lu|p) (x))1/p

+ ck2+Q/p
(
a]R

)1/βp
q∑

i,j=1

(M(|XiXju|pα) (x))1/αp .

To do this, pick x ∈ BγR and a ballBr (x), admissible for the evalutation of (XiXju)#
Ω′,Ω′′ (x),

that is: x ∈ Br (x) ⊂ Ω′′, x ∈ Ω′. By Theorem 3.3 we can bound

1

|Br|

∫
Br

|XiXju (y)− (XiXju)Br |dy

6
c

k

q∑
i,j=1

1

|Bkr|

∫
Bkr

|XiXju (y) |dy + ck2+Q/p

(
1

|Bkr|

∫
Bkr

|Lu|pdy
)1/p

.(4)

To bound the right hand side, we can write

1

|Bkr|

∫
Bkr

|XiXju (y) |dy 6M(XiXju) (x)∥∥Lu∥∥
Lp(Bkr)

6 ‖Lu‖Lp(Bkr)
+
∥∥Lu− Lu∥∥

Lp(Bkr)

and exploit the fact that(
1

|Bkr|

∫
Bkr

|Lu (y) |pdy
)1/p

6 (M(|Lu|p) (x))1/p

so that

1

|Br|

∫
Br

|XiXju (y)− (XiXju)Br |dy 6
c

k

q∑
i,j=1

M(XiXju) (x)

+ ck2+Q/p

{
(M(|Lu|p) (x))1/p +

1

|Bkr|1/p
∥∥Lu− Lu∥∥

Lp(Bkr)

}
.(5)

Next, let us write∫
Bkr

|Lu(x)− Lu(x)|pdx

6 c

q∑
i,j=1

(∫
Bkr∩BR

|aij − aij(x)|pβdx
)1/β (∫

Bkr∩BR
|XiXju|pαdx

)1/α

.(6)
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Since the coefficients aij, aij are bounded by 1/µ we have

(7)

∫
Bkr∩BR

|aij − aij(x)|pβdx 6 µ−βp+1

∫
Bkr∩BR

|aij (x)− aij| dx.

We now choose a particular constant matrix {aij}, depending on r, k:

aij =

 (aij)BR if kr ≥ R

(aij)Bkr if kr 6 R

and with this definition we easily get∫
Bkr∩BR

|aij (x)− aij| dx 6 c(kr)Qa]R,

which together with (5), (6), (7), gives

1

|Br|

∫
Br

|XiXju (y)− (XiXju)Br |dy 6
c

k

q∑
i,j=1

M(XiXju) (x) + ck2+Q/p (M(|Lu|p) (x))1/p

+ ck2+Q/p 1

|Bkr|1/p
q∑

i,j=1

(
µ−βp+1c(kr)Qa]R

)1/pβ
(∫

Bkr∩BR
|XiXju|pαdx

)1/pα

(8)

and the last line is bounded by

ck2+Q/p
(
a]R

)1/pβ
q∑

i,j=1

1

(kr)Q/pα

(∫
Bkr

|XiXju|pαdx
)1/pα

6 ck2+Q/p
(
a]R

)1/pβ
q∑

i,j=1

(M(|XiXju|pα) (x))
1/pα

with c also depending on µ. Inserting this bound into (8) and finally taking the supremum

over all the admissible balls Br, we get the statement of Theorem 3.2.

So, we are reduced to the proof of Theorem 3.3, which deals with constant coefficient

operators. Note how in the previous reasoning the “right” choice of the constant matrix

does not consist in freezing the coefficients at some point, but in averaging them over

suitable balls. This is an ingenious technique, firstly devised in [26] to reduce the analysis

of a variable coefficient operator to that of a constant coefficient operator, and brings a

relevant simplification to the general strategy.
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Let us note, however, that the proof of Theorem 3.3 is not easy, especially in the present

context where the model operator L is not a constant coefficient elliptic or parabolic

operator, but a sublaplacian on a Carnot group.

We will not describe in detail this proof. What follows is just a list of the tools which

enter the proof of Theorem 3.3 given in [7]:

Poincaré’s inequality on Carnot groups (Jerison, [21]). For every p ∈ [1,∞)

there exist constants c > 0,Λ > 1 such that for every ball B = B (x0, r) and function

u ∈ C1
(
ΛB
)
,(

1

|B|

∫
B

|u (x)− uB|p dx
)1/p

6 cr

(
1

|ΛB|

∫
ΛB

|Xu (x)|p dx
)1/p

.

Note that the constant Λ appearing in this theorem is the one which enters the statements

of Theorems 3.2 and 3.3.

This result, applying the standard Lax-Milgram approach, also gives the next tool:

Solvability in weak sense of the Dirichlet problem Lu = f ∈ L2 (BR) in BR

u = g ∈ W 1,2
X (BR) on ∂BR

where we look for u ∈ W 1,2
X (BR) such that u− g ∈ W 1,2

0,X (BR). A maximum principle for

this problem is also established and used.

Subelliptic estimates (Kohn, [25]) for the model operator L, with a uniform control

on the constant as the matrix aij ranges in the ellipticity class (the uniformity of the

bound can be checked just going through the proof). There exists ε > 0 and, for every

pair of cutoff functions η, η1 ∈ C∞0 (Rn) with η1 = 1 on sprt η, and for every σ, τ > 0,

there exists c > 0 such that

‖ηu‖Hσ+ε 6 c
(∥∥η1Lu

∥∥
Hσ + ‖η1u‖H−τ

)
where Hσ denotes the standard fractional Sobolev space over Rn, defined via Fourier

transform, and c depends on aij only through the number µ.

Existence of a (2−Q)-homogeneous global fundamental solution for L (Fol-

land, [19]), with a uniform estimate as the matrix aij ranges in the ellipticity class (the
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uniformity of this bound is proved in [2]):

|Γa(x)| 6 c

‖x‖Q−2
∀x ∈ Rn \ {0} ,

where c depends on aij only through the number µ.

Other tools entering the proof of Theorem 3.3 are an essential use of dilations on the

group, and the use of interpolation inequalities to bound norms of Xiu by norms of X2
i u

and u.

4. Generalizations and open problems

As the previous discussion shows, an interesting feature of the sharp function technique

is the way it reduces the study of operators with variable coefficients to that of operators

with constant coefficients. On the other hand, the proof of the required estimate for these

model operators is far from being trivial. As we shift our interest from elliptic equations

with VMO coefficients to more and more general classes of operators, the study of the

class of “model operators” which play the role of “constant coefficient operators” becomes

more challenging.

Let us end with a brief survey of some classes of operators which have been success-

fully studied with this technique, and some open problems which are naturally suggested

concerning operators structured on Hörmander vector fields.

In [26], Krylov considers uniformly parabolic operators with coefficients aij (t, x) which

are VMO with respect to x and just L∞ in t. Namely, the assumption is:

sup
(t,x)

sup
r<R

1

r2 |Br (x)|

∫ t+r2

t

∫
y,z∈Br(x)

|aij (s, y)− aij (s, z)| dydzds→ 0 as R→ 0.

Under this assumption, well-posedness of the Cauchy problem in W 1,2
p on the whole space

for p ∈ (1,∞) is established. In this situation, the model operators are:

Lu = ut −
n∑

i,j=1

aij (t)uxixj .

Analogously, Kim and Krylov in [22] consider elliptic operators with coefficients aij (x′, xn) which

are VMO with respect to x′ and just L∞ in t, and they prove well-posedness of the prob-

lem Lu = f on the whole space in W 2,p for p ∈ (2,∞) .
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So, a class of natural open problems is the following: can one prove W 1,2,p
X estimates

for evolution operators structured on Hörmander vector fields

Lu = ut −
q∑

i,j=1

aij (t, x)XiXju,

assuming aij to be VMO in space and just L∞ in time? This should require a deep

analysis of the model operators

Lu = ut −
q∑

i,j=1

aij (t)XiXju.

An analogous problem could be posed for Kolmogorov-Fokker-Planck operators, mod-

eled on the class introduced by Lanconelli-Polidoro in [30], of the kind

Lu =

q∑
i,j=1

aij (t, x)uxixj + 〈x,BDu〉 − ut

under similar assumptions on aij. In this case the class of model operators is:

Lu =

q∑
i,j=1

aij (t)uxixj + 〈x,BDu〉 − ut.

Both the problems seem to be challenging.
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