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UNA STIMA SPARSA PER FORME MULTISUBLINEARI DI
FUNZIONI MASSIMALI A VALORI VETTORIALI
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Abstract. We prove a sparse bound for the m-sublinear form associated to vector-

valued maximal functions of Fefferman-Stein type. As a consequence, we show that the

sparse bounds of multisublinear operators are preserved via `r-valued extension. This

observation is in turn used to deduce vector-valued, multilinear weighted norm inequal-

ities for multisublinear operators obeying sparse bounds, which are out of reach for the

extrapolation theory developed by Cruz-Uribe and Martell in [6]. As an example, vector-

valued multilinear weighted inequalities for bilinear Hilbert transforms are deduced from

the scalar sparse domination theorem of [7].

Sunto. In questa nota dimostriamo una stima sparsa per forme m-sublineari asso-

ciate a funzioni massimali a valori vettoriali di tipo Fefferman-Stein. In conseguenza di

tale stima, dimostriamo che le norme sparse di operatori multisublineari sono preservate

dall’estensione a valori in `r. Da tale risultato si deducono stime pesate di tipo multilin-

eare a valori vettoriali che non possono essere dimostrate all’interno della recente teoria

di estrapolazione di Cruz-Uribe e Martell [6]. In qualità di esempio, otteniamo stime

pesate multilineari a valori vettoriali per la trasformata di Hilbert bilineare, utilizzando

la stima sparsa dimostrata dagli autori in [7].
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1. Main results

Let m = 1, 2, . . . and ~p = (p1, . . . , pm) ∈ (0,∞]m be a generic m-tuple of exponents.

This note is centered around the vector-valued m-sublinear maximal function

(1) M~p,r(f
1, . . . ,fm) :=

∥∥∥∥∥sup
Q

m∏
j=1

〈f jk〉pj ,Q1Q

∥∥∥∥∥
`r(CN )

, 1 ≤ r ≤ ∞.

Here each f j = (f j1 , . . . , f
j
N) is a CN -valued locally pj-integrable function on Rd, the supre-

mum is being taken over all cubes Q ⊂ Rd. and we have adopted for a = (a1, . . . , aN) ∈

CN the usual notation

‖a‖`r :=

(
N∑
k=1

|ak|r
) 1

r

, 0 < r <∞, ‖a‖`∞ := sup
k=1,...,N

|ak|,

as well as

〈f〉p,Q :=
‖f1Q‖p
|Q|

1
p

.

The parameter N is merely formal and all `r-valued estimates below are meant to be

independent of N without explicit mention. Note that when m = 1, (1) reduces to the

well studied Fefferman-Stein maximal function [19, Ch. II.1]. In fact, it follows by Hölder’s

inequality that

(2) M~p,r(f
1, . . . ,fm) ≤

m∏
j=1

Mpj ,rj(f
j).

Therefore, the full range of strong Lebesgue space estimates

(3)

M~p,r :
m∏
j=1

Lqj(Rd; `rj)→ Lq(Rd), q =
1∑m
j=1

1
qj

, r =
1∑m
j=1

1
rj

, 1 ≤ pj < min{rj, qj}

and the weak-type endpoint

(4) M~p,r :
m∏
j=1

Lpj(Rd; `rj)→ Lp,∞(Rd), p =
1∑m
j=1

1
pj

, r =
1∑m
j=1

1
rj

, 1 ≤ pj < rj

are subsumed by the m = 1 case discussed in [19, Ch. II.1], via Hölder’s inequality

in strong and weak-type spaces respectively. Moreover, (2) can be strengthened to the
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following form: given any partition I := {I1, . . . , Is} of {1, . . . ,m}, there holds

M~p,r(f
1, . . . ,fm) ≤

s∏
i=1

M~pi,ri(f
(i)) ≤

m∏
j=1

Mpj ,rj(f
j),

where f (i) := {f j}j∈Ii , ~pi := (pj)j∈Ii , and 1/ri :=
∑

j∈Ii 1/rj.

The first main result of this note, Theorem 1.2 below, is a nearly sharp sparse estimate

involving vector-valued m-sublinear maximal functions of the form

(5)

∫
Rd

s∏
i=1

M~pi,ri(f
(i))(x) dx,

which strengthens the Lebesgue space estimates (3), (4). As an application of Theorem

1.2, we obtain a structural result on sparse bounds, Theorem 1.1 below, which seems to

have gone unnoticed in previous literature: sparse bounds in the scalar setting self-improve

to the `r-valued setting. In other words, if a given sequence of operators are known to obey

a uniform sparse bound, the vector-valued operator associated to the sequence satisfies the

same `r-valued sparse bound, without the need for additional structure of the operators.

We proceed to define the notion of sparse bound we have referred hitherto. A countable

collection Q of cubes of Rd is sparse if there exist a pairwise disjoint collection of sets

{EQ : Q ∈ Q} such that for each Q ∈ Q there holds

EQ ⊂ Q, |EQ| >
1

2
|Q|.

Let n ≥ 1 and T be a n-sublinear operator mapping (n copies of) L∞0 (Rd;C) into locally

integrable functions. If ~p ∈ (0,∞)n+1, the sparse ~p norm of T , denoted by ‖T‖~p, is the

least constant C > 0 such that for all (n + 1)-tuples ~g = (g1, . . . , gn+1) ∈ L∞0 (Rd;C)n+1

we may find a sparse collection Q = Q(~g) such that

∣∣〈T (g1, . . . , gn), gn+1〉
∣∣ ≤ C

∑
Q∈Q

|Q|
n+1∏
j=1

〈gj〉pj ,Q.

Beginning with the breakthrough work of Lerner [16], sparse bounds have recently come

to prominence in the study of singular integral operators, both at the boundary of [1,

5, 14, 17] and well beyond Calderón-Zygmund theory [3, 5, 7, 11]; the list of references

provided herein is necessarily very far from being exhaustive. As we will see in Section 3,
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their interest lies in that they imply rather easily quantitative weighted norm inequalities

for the corresponding operators.

The concept of sparse bound extends naturally to vector-valued operators. If

T = {T1, . . . , TN}

is a sequence of n-sublinear operators as above, we may let T act on L∞0 (Rd;CN)n as

〈T (f 1, . . . ,fn),fn+1〉 :=
N∑
k=1

〈Tk(f 1
k , . . . , f

n
k ), fn+1

k 〉.

Let (r1, . . . , rn+1) be a Banach Hölder (n+ 1)-tuple, that is

(6) 1 ≤ rj ≤ ∞, j = 1, . . . , n+ 1, r :=
rn+1

rn+1 − 1
=

1∑n
j=1

1
rj

and define the sparse (~p, ~r)-norm of T as the least constant C > 0 such that

|〈T (f 1, . . . ,fn),fn+1〉| ≤ C
∑
Q∈Q

|Q|
n+1∏
j=1

〈
‖f j‖`rj

〉
pj ,Q

(7)

for all (n + 1)-tuples ~f ∈ L∞0 (Rd;CN)n+1 and for a suitable choice of Q = Q(~f). We

denote such norm by ‖T ‖(~p,~r). Our punchline result is the following.

Theorem 1.1. Let ~p ∈ [1,∞)n+1 and ~r be as in (6) with the assumption rj > pj. Then

(8) ‖{T1, . . . , TN}‖(~p,~r) . sup
k=1,...,N

‖Tk‖~p.

The implicit constant depends on the tuples ~p and ~r and on the dimension d.

Remark 1.1. The recent preprint [2] contains a direct proof of `r-valued sparse form

estimates for multilinear multipliers with singularity along one-dimensional subspaces,

generalizing the paradigmatic bilinear Hilbert transform, as well as for the variation norm

Carleson operator. Theorem 1.1 thus allows to recover these results of [2] from the corre-

sponding scalar valued results previously obtained in [7], which is recalled in (35) below,

and [8] respectively.

We refer the readers to Subsection 1.1 for a proof of Theorem 1.1 and proceed with

introducing the main theorem concerning sparse bounds of multisublinear forms of type

(5), whose proof is postponed to Section 2.
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Theorem 1.2. Let there be given m-tuples ~p = (p1, . . . , pm) ∈ [1,∞)m, ~r = (r1, . . . , rm) ∈

[1,∞]m with

1

r
:=

m∑
j=1

1

rj
, pj < rj, j = 1, . . . ,m.

1. Let ε > 0. There exists a sparse collection Q such that

(9)

∫
Rd

m∏
j=1

Mpj ,rj(f
j)(x) dx .

∑
Q∈Q

|Q|
m∏
j=1

〈
‖f j‖`rj

〉
pj+ε,Q

.

The implicit constant is allowed to depend on ε > 0, as well as the tuples ~p, (r1, . . . , rm)

and on the dimension d.

2. There exists a sparse collection Q, possibly different from above, such that

(10)

∫
Rd

M~p,r(f
1, . . . ,fm)(x) dx .

∑
Q∈Q

|Q|
m∏
j=1

〈
‖f j‖`rj

〉
pj ,Q

.

The implicit constant is allowed to depend on ~p, (r1, . . . , rm) and d.

Remark 1.2. An immediate consequence of Theorem 1.2 is a sparse bound for multisub-

linear forms involving any M~p,r. More precisely, for any partition I := {I1, . . . , Is} of

{1, . . . ,m}, there exists a sparse collection Q (depending on I) such that

(11)

∫
Rd

s∏
i=1

M~pi,ri(f
(i))(x) dx .

∑
Q∈Q

|Q|
m∏
j=1

〈
‖f j‖`rj

〉
pj+ε,Q

.

We do point out that even though the s = 1 case of (11), i.e. when the partition I contains

only {1, . . . ,m} itself, already implies a sparse bound for the form on the left hand side

of (10), it fails to recover the full strength of (10) due to the ε-loss.

1.1. Vector valued sparse estimates from scalar ones. In this subsection we prove

Theorem 1.1, with the key ingredients being (10) and the following observation, which

we record as a lemma; a similar statement may be found in the argument following [7,

Appendix A, (A.8)].

Lemma 1.1. Let ~f ∈ L∞0 (Rd;CN)n+1. Then

(12) |〈T (f 1, . . . ,fn),fn+1〉| ≤ 2

(
sup

k=1,...,N
‖Tk‖~p

)∫
Rd

M~p,1(f
1, . . . ,fn+1) dx

where ~p = (p1, . . . , pn+1).
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Proof. Normalize ‖Tk‖~p = 1 for k = 1, . . . , N . Using the definition, for k = 1, . . . , N we

may find sparse collections Q1, . . . ,QN such that

|〈Tk(f 1
k , . . . , f

n
k ), fn+1

k 〉| ≤
∑

Qk∈Qk

|Qk|
n+1∏
j=1

〈
f jk
〉
pj ,Qk

≤ 2

∫
Rd

Fk(x) dx,

having defined

Fk =
∑

Qk∈Qk

(
n+1∏
j=1

〈
f jk
〉
pj ,Qk

)
1EQk

,

where the last inequality follows from the pairwise disjointness of the distinguished major

subsets EQk
⊂ Qk, with 2|EQk

| ≥ |Qk|. Therefore,

|〈T (f 1, . . . ,fn),fn+1〉| ≤ 2

∫
Rd

M~p,1(f
1, . . . ,fn+1)(x) dx.

�

Theorem 1.1 then immediately follows from Lemma 1.1 recalling (10).

Remark 1.3. Lemma 1.1 obviously applies to any (n+1)-sublinear form Λ(f 1, . . . ,fn+1),

not necessarily of the form 〈T (f 1, . . . ,fn),fn+1〉. We then record the following observa-

tion: in the scalar valued case N = 1, there holds the equivalence

(13) sup
Q sparse

∑
Q∈Q

|Q|
m∏
j=1

〈
f j
〉
pj ,Q
∼
∫
Rd

M~p(f
1, . . . , fm)(x) dx.

Incidentally, this is an alternative proof of the useful “one form rules them all” principle

of Lacey and Mena Arias [15, Lemma 4.7]. Indeed, (13) follows from applying Lemma

1.1 to the case N = 1 and to the m-sublinear form on the left hand side of (13). Such an

equivalence does not seem to hold in the vector-valued case.

2. Proof of Theorem 1.2

The proof of the main result is iterative in nature and borrows some of the ingredients

from the related articles [5, 9]. Throughout, we assume that the tuples ~p = (p1, . . . , pm)

and (r1, . . . , rm) as in the statement of Theorem 1.2 are fixed. We first prove part 1, and

the proof of part 2, which is very similar and is in fact simpler, will be given at the end

of the section.
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2.1. Truncations and a simple lemma. We start by defining suitable truncated ver-

sions of the Fefferman-Stein maximal functions (1). For s, t > 0, write

As,tj f j :=

∥∥∥∥∥ sup
s<`(Q)≤t

〈f jk〉pj ,Q1Q

∥∥∥∥∥
`rj (CN )

, j = 1, . . . ,m.

Note that ∀j,

(14) sup
s<t

As,tj f j = Mpj ,rjf
j.

We will be using the following key lemma, which is simply the lower semicontinuity

property of truncated maximal operators.

Lemma 2.1. Let x, x0 ∈ Rd and s & dist(x0, x). Then

As,tj f j(x) . As,tj f j(x0).

2.2. Main argument. We work with a fixed δ > 0; we will let δ → 0 in the limiting

argument appearing below. For a cube Q we define further localized versions as

(15) AQj (f j) := 1QA
δ,`(Q)
j (f j) = 1QA

δ,`(Q)
j (f j13Q)

where the the last inequality follows from support consideration.

By standard limiting and translation invariance arguments, (9) is reduced to the fol-

lowing sparse estimate: if Q is a cube belonging to one of the 3d standard dyadic grids,

then

(16) ΛQ(f 1, . . . ,fm) :=

∫
Q

m∏
j=1

AQj (f j)(x) dx .
∑
L∈Q

|L|
m∏
j=1

〈
‖f j‖`rj

〉
pj+ε,L

uniformly over δ > 0, where Q is a stopping collection of pairwise disjoint cubes. Estimate

(16) follows by iteration of the following lemma: the iteration procedure is identical to

the one used, for instance, in the proof of [17, Theorem 3.1] and is therefore omitted.

Lemma 2.2. There exists a constant Θ, uniform in the data below, such that the following

holds. Let Q be a dyadic cube and (f 1, . . . ,fm) ∈ L∞0 (Rd;CN)m. Then there exists a

collection L ∈ Q of pairwise disjoint dyadic subcubes of Q such that∑
L∈Q

|L| ≤ 2−16|Q|
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and

ΛQ(f 1, . . . ,fm) ≤ Θ|Q|
m∏
j=1

〈
‖f j‖`rj

〉
3Q,pj+ε

+
∑
L∈Q

ΛL(f 1, . . . ,fm).

2.3. Proof of Lemma 2.2. We can assume everything is supported in 3Q. By hori-

zontal dilation invariance we may assume |Q| = 1. By vertical scaling we may assume

〈‖f j‖`rj 〉pj+ε,3Q = 1 for all j = 1, . . . ,m. Define the collection L ∈ Q as the maximal

dyadic cubes of Rd such that 9L ⊂ EQ where

EQ =
m⋃
j=1

{
x ∈ Q : M ◦ AQj (f j)(x) ≥ C

}
,

here M is the usual Hardy-Littlewood maximal function. If C is large enough, using the

Lebesgue space boundedness of M ◦AQj with the choices qj = pj + ε in (3), the set EQ has

small measure compared to Q and same for the pairwise disjoint cubes L in the stopping

collection Q.

As a consequence of the construction of Q and of Lemma 2.1 we obtain the following

properties for all j = 1, . . . ,m and L ∈ Q

sup
x 6∈EQ

AQj (f j)(x) . 1,(17)

sup
L′&L
〈AQj (f j)〉1,L′ . 1,(18)

sup
x∈L

A
`(L),`(Q)
j (f j)(x) . 1.(19)

The third property follows from the fact that if x ∈ L there is a point x0 ∈ L′, with L′ a

moderate dilate of L, with small Mj, so that one may apply Lemma 2.1.

We now prove the main estimate. By virtue of (17),

(20)

∫
Q\EQ

m∏
j=1

AQj (f j)(x) dx . 1.

Given that L ∈ Q cover EQ and are pairwise disjoint it then suffices to prove that for

each L

(21)

∫
L

m∏
j=1

AQj (f j)(x) dx ≤ ΛL(f 1, . . . ,fm) + C|L|
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and sum this estimate up. Observe that the left hand side of (21) is bounded by the sum

(22)

∫
L

m∏
j=1

A
δ,`(L)
j f j(x) dx+

∑
τ1,...,τm

∫
L

m∏
j=1

A
τj
j f

j(x) dx,

where A
τj
j is either A

δ,`(L)
j or A

`(L),`(Q)
j , and the sum is over all the possible combinations

of {τ1, . . . , τm} except the one with A
δ,`(L)
j appearing for all j. Note that the first term in

the above display is equal to ΛL(f 1, . . . ,fm), so it suffices to show that

(23)
∑

τ1,...,τm

∫
L

m∏
j=1

A
ρj
j f

j(x) dx . |L|

where A
ρj
j is either AQj or A

`(L),`(Q)
j and A

`(L),`(Q)
j appears at least at one j. This is because

the left hand side is larger than the second term of (22). But this is immediate by using

the L1 estimate of (18) on the terms of the type AQj f
j and the L∞ estimate of (19) on

the terms A
`(L),`(Q)
j f j respectively. The proof is complete.

2.4. Proof of (10). The proof of (10) proceeds very similarly to the one given above.

Write ~f = (f 1, . . . ,fm) for simplicity and define the multilinear version of the truncated

operator

As,t~f :=

∥∥∥∥∥ sup
s<`(Q)≤t

m∏
j=1

〈f jk〉pj ,Q1Q

∥∥∥∥∥
`r(CN )

, s, t > 0.

With this definition of As,t, the analogues of (14) and Lemma 2.1 still hold. Therefore, a

similar liming argument as above reduces the matter to showing

ΛQ(~f) :=

∫
Q

AQ~f(x) dx .
∑
L∈Q

|L|
m∏
j=1

〈
‖f j‖rj

〉
pj ,L

uniformly over δ > 0 for some stopping collection Q, where AQ is the localized version

of As,t defined as in (15). The proof of the last display proceeds by iteration of the

analogous result to Lemma 2.2: for any dyadic cube Q and ~f ∈ L∞0 (Rd;CN)m there exists

a collection L ∈ Q of pairwise disjoint dyadic subcubes of Q such that∑
L∈Q

|L| ≤ 2−16|Q|

and

ΛQ(~f) ≤ Θ|Q|
m∏
j=1

〈
‖f j‖`rj

〉
3Q,pj

+
∑
L∈Q

ΛL(~f).
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To prove the last claim, the following changes are needed in the proof of Lemma 2.2. We

use instead the normalization
〈
‖f j‖`rj

〉
pj ,3Q

= 1 without the ε, and define the exceptional

set without the extra Hardy-Littlewood maximal function, i.e.

EQ := {x ∈ Q : AQ(~f)(x) ≥ C}.

Since, from (4), AQ has the weak-type bound at
∏m

j=1 L
pj , the measure of EQ is small for

sufficiently large C. Note that one still has analogues of estimates (17) and (19) for AQ~f

in place of AQj (f j), and (18) becomes irrelevant in this case. The proof is completed by

using these estimates as in (20) and (23) respectively.

3. Vector-valued weighted norm inequalities

Using the almost equivalence between scalar and vector-valued sparse estimates of The-

orem 1.1, we prove vector-valued weighted norm inequalities for n-sublinear operators

with controlled sparse ~p = (p1, . . . , pn+1) norm. The weighted bounds can be obtained via

estimates for the form

(g1, . . . , gn+1) 7→ P~p(g
1, . . . , gn+1;F ) :=

∫
F

M(p1,...pn)(g
1, . . . , gn)(x)Mpn+1g

n+1(x) dx.

where

(24) M~t(g
1, . . . , gn) :=

∣∣∣∣∣sup
Q

n∏
j=1

〈gj〉tj ,Q1Q

∣∣∣∣∣
is the scalar valued version of (1). We consider Hölder tuples

(25) 1 ≤ q1, . . . , qn ≤ ∞, q :=
1∑n
j=1

1
qj

≤ 1

and weight vectors ~v = (v1, . . . , vn) in Rd with

(26) v =
n∏
j=1

v
q
qj

j .

It is well known [18, Theorem 3.3] that

(27) M(p1,...pn) :
n∏
j=1

Lqj(vj)→ Lq(v) ⇐⇒ q1 > p1, . . . , qn > pn, [~v]
A

(p1,...,pn,1)

(q1,...,qn)

<∞
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where the vector weight characteristic appearing above is defined more generally by

(28) [~v]
A

(t1,...,tn+1)

(q1,...,qn)

:= sup
Q

(
〈v〉

1
q

tn+1
q−(q−1)tn+1

,Q

n∏
j=1

〈(vj)−1〉
1
qj

tj
qj−tj

,Q

)
<∞.

When n = 1, the above characteristics generalize the familiar At (Muckenhoupt) and RHt

(Reverse Hölder) classes, namely

A(t1,t2)
q = A q

t1
∩RH t2

q−(q−1)t2

.

Theorem 3.1. Let (q1, . . . , qn), q be as in (25) and let ~v = (v1, . . . , vn), v be as in (26).

Assume that

1. sup
j=1,...,N

‖Tj‖~p ≤ 1 for some ~p = (p1, . . . , pn+1) with 1 ≤ p1 ≤ q1, . . . , 1 ≤ pn ≤ qn;

2. condition (27) holds, namely

~v ∈ A(p1,...,pn,1)
(q1,...,qn)

;

3. there exists t ∈ [1, p′n+1] such that

v ∈ At ∩RH pn+1
t(1−pn+1)+pn+1

.

Then the vector-valued strong type bound

(29) T :
n∏
j=1

Lqj(vj; `
rj)→ Lq(v; `r)

holds true whenever r1 ≥ p1, . . . , rn ≥ pn, rn+1 = r′ ≥ pn+1.

Proof. As ‖Tj‖~p ≤ 1 for all j, Theorem 1.1 implies that there exists a sparse collection Q

such that

(30) |〈T (f 1, . . . ,fn),fn+1〉| .
∑
Q∈Q

|Q|
n+1∏
j=1

〈
‖f j‖`rj

〉
pj ,Q

under the the assumptions rj > pj, j = 1, . . . , n+ 1. By interpolation, it suffices to prove

the weak-type analogue of (29). We use the well known principle

(31)

∥∥∥∥∥T :
n∏
j=1

Lqj(vj; `
rj)→ Lq,∞(v; `r)

∥∥∥∥∥ . sup inf
G⊂F

v(F )≤2v(G)

|〈T (f 1, . . . ,fn),fn+1v1G〉|
v(F )1−

1
q

,
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where the supremum is taken over sets F ⊂ Rd of finite measure, f j ∈ Lqj(vj; `rj), j =

1, . . . , n of unit norm, and functions fn+1 with ‖fn+1‖L∞(Rd;`rn+1 ) ≤ 1. Fix F,f j as such

and introduce the scalar-valued functions gj := ‖f j‖`rj , j = 1, . . . , n+ 1. Set,

E =
{
x ∈ Rd : M(p1,...,pn)(g

1, . . . , gn) > β
1
q v(F )−

1
q

}
,

where β > 0 will be determined at the end. We let G̃ = Rd \ E and finally we define the

smaller set G = F \ E ′ where E ′ is the union of the maximal dyadic cubes Q such that

|Q| ≤ 25|Q ∩ E|. Notice that

|E ′| ≤ 25|E| =⇒ v(E ′) ≤ C([v]A∞)v(E) <
C

β
v(F ) ≤ 1

2
v(F )

by choosing β large enough and relying upon the bound (27) to estimate v(E). Therefore

G is a major subset of F . In this estimate we have used that v ∈ A∞, which is guaranteed

by the third assumption of the theorem.

Now, the argument used in [7, Appendix A] applied to (30) with fn+1 replaced by

fn+1v1G returns

|〈T (f 1, . . . ,fn),fn+1v1G〉| .
∑
Q∈Q

|Q∩G̃|≥2−5|Q|

|Q|

(
n∏
j=1

〈gj〉pj ,Q

)
〈gn+1v1F 〉pn+1,Q

. P~p(g
1, . . . , gn, gn+1v1F ;Rd\E).

(32)

Further, if t is as in the third assumption, an interpolation argument between (27) and

the L∞ estimate off the set E yields∥∥M(p1,...,pn)(g
1, . . . , gn)1Rd\E

∥∥
Lt(v)

. v(F )
1
t
− 1

q .

Therefore

|〈T (f 1, . . . ,fn),fn+1v1G〉| . P~p(g
1, . . . , gn, gn+1v1F ;Rd\E)

=

∫
G̃

(
M(p1,...,pn)(g

1, . . . , gn)v
1
t

)(
Mpn+1(g

n+1v1F )v−
1
t

)
dx

≤
∥∥M(p1,...,pn)(g

1, . . . , gn)1Rd\E
∥∥
Lt(v)
‖Mpn+1(v1F )‖Lt′ (v1−t′ ) . v(F )

1
t
− 1

q v(F )
1
t′ = v(F )1−

1
q

which, combined with (31), gives the desired result. Note that the third assumption,

which is equivalent [10] to

v1−t
′ ∈ A t′

pn+1
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was used to ensure the boundedness of Mpn+1 on Lt
′
(v1−t

′
). The proof is thus completed.

�

Remark 3.1. Theorem 3.1 does not cover the range q > 1. In that range, in fact, (29)

continues to hold with conditions 2. and 3. of Theorem 3.1 replaced by a single condition

of multilinear type. To wit, if ‖{T1, . . . , TN}‖~p <∞ with

1 ≤ p1 ≤ min{q1, r1}, . . . , 1 ≤ pn ≤ min{qn, rn}, 1 ≤ pn+1 ≤ min

{
q

q − 1
, rn+1

}
and ~v ∈ A(p1,...,pn+1)

(q1,...,qn)
, then the bound (29) holds true. The proof uses the sparse bound (30)

in exactly the same fashion as [7, Theorem 3]. When q ≤ 1, we are not aware of a fully

multilinear sufficient condition on the weights leading to estimate (29); Theorem 3.1 is a

partial substitute in this context.

Remark 3.2. As the multilinear weighted classes (28) are not amenable to (restricted

range) extrapolation, Theorem 3.1, as well as its corollaries described in the next sec-

tion, cannot be obtained within the multilinear extrapolation theory developed in the recent

article [6].

3.1. An example: the bilinear Hilbert transform. We show how, in view of the

scalar sparse domination results of [7], Theorem 3.1 applies to a class of operators which

includes the bilinear Hilbert transform. Let Tm be bilinear operators whose action on

Schwarz functions is given by

(33) 〈Tm(g1, g2), g3〉 =

∫
ξ1+ξ2+ξ3=0

m(ξ)
3∏
j=1

ĝj(ξj) dξ.

Here m belongs to the class M of bilinear Fourier multipliers with singularity along the

one dimensional subspace {ξ ∈ R3 : ξ1 = ξ2}; that is

(34) sup
m∈M

sup
|α|≤N

sup
ξ1+ξ2+ξ3=0

∣∣ξ1 − ξ2∣∣α∣∣∂αm(ξ)
∣∣ .N 1.

The bilinear Hilbert transform [12, 13] corresponds to the (formal) choice m(ξ) = sign(ξ1−

ξ2). Sparse bounds for this type of operators were first established, and fully characterized
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in the open range, in [7], where it was proved that

(35) sup
m∈M

‖Tm‖~p <∞ ⇐⇒ 1 < p1, p2, p3 <∞,
3∑
j=1

1

min{pj, 2}
< 2.

Therefore, Theorem 3.1 with n = 2 may be applied for any ~p in the range (35). It is easy to

see that there exists such a ~p with 1 ≤ q1 ≤ p1, 1 ≤ q2 ≤ p2 for all (q1, q2) belonging to the

sharp open range of unweighted strong-type estimates for the multipliers {Tm : m ∈M},

namely

(36) 1 < q1, q2 ≤ ∞,
2

3
< q <∞.

Therefore, Theorem 3.1, together with its version for q > 1 described in Remark 3.1, yield

weighted, vector-valued boundedness of the multipliers {Tm : m ∈ M} for weights v1, v2

satisfying conditions 2. and 3. and the exponents recover the full unweighted range.

Weighted bounds in such a full range, under more stringent assumption on the weights

were obtained in [6] by extrapolation of the results of [7]. The vector-valued analogue of

the results in [6] was instead proved in [2] by making use of vector-valued sparse bounds

in a different way. To illustrate the subtle difference between the class of weights allowed

in [2, 6] and those falling within the scope of Theorem 3.1, we particularize our result to

the diagonal case q1 = q2 = 2q with 2
3
< q <∞. This is done for simplicity of description

of the multilinear classes A
(t1,...,tn+1)
(q1,...,qn)

when tn+1 = 1, t1 = · · · = tn, but off diagonal results

can also be obtained in a similar fashion.

Note that the tuple (parametrized by s)

p1 = p2 =
2

s
, p3 =

1

2− s
+ δ, 1 ≤ s ≤ 3

2

satisfies the conditions in (35) for all δ > 0. As noted in [4, Lemma 3.2], if qs ≥ 1, then

(37) (v1, v2) ∈ A
( 2
s
, 2
s
,1)

(2q,2q) ⇐⇒ v1, v2 ∈ RC

(
1

1− qs
,

1

1 + qs

)
) Aqs, v = (v1v2)

1
2 ∈ A2qs.

Recall from [10] that for −∞ ≤ α < β ≤ ∞, the weight class RC(α, β) contains those

weights w on Rd such that

〈w〉β,Q ≤ C〈w〉α,Q,
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with C uniform over all cubes Q of Rd. In particular, for 1 ≤ t <∞

At = RC

(
1

1− t
, 1

)
, RH t = RC (1, t) .

and the strict inclusion in (37) follows from the obvious relations α ≤ γ ≤ δ ≤ β =⇒

RC(α, β) ⊂ RC(γ, δ). This observation characterizes the weights that will verify the

second assumption of Theorem 3.1. Finally, rewriting the third assumption for our choice

of tuple ~p yields the following result, which strictly contains the diagonal case of the main

results of [6] (see also [2] for the vector-valued analogue).

Theorem 3.2. Let 2
3
< q ≤ 1, v1, v2 be weights on R. Assume that there exist

s ∈
[
1
q
, 3
2

]
, t ∈

[
1, 1

s−1

)
such that

v1, v2 ∈ RC

(
1

1− qs
,

1

1 + qs

)
) Aqs

and

v := (v1v2)
1
2 ∈ Amin{t,2qs} ∩RH 1

1−t(s−1)
.

Then the vector-valued strong type bound

(38) T = {Tmj
: mj ∈M} :

2∏
j=1

L2q(vj; `
rj)→ Lq(v; `r)

holds true whenever min{r1, r2} ≥ 2
s
, r3 = r′ ≥ 1

2−s .

For instance, the estimate, valid for all vector-valued tuples with min{r1, r2, r3} ≥ 2,

T :
2∏
j=1

L2q(v; `rj)→ Lq(v; `r), v1, v2 ∈ A 3q
2
, v ∈ A 3q

2
∩RH2,

2

3
< q ≤ 1,

follows by taking s = 3
2
, t = 1 in Theorem 3.2. This result includes [7, Corollary 4], in

vector-valued form.
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