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Abstract. We study some aspects of the iteration of an entire map f over the complex

plane C. In many settings in complex dynamics one can define periodic curves (called

dynamic rays) in the dynamical plane and study their relation with periodic points. The

most famous example of this kind of results is the Douady-Hubbard landing theorem for

polynomial dynamics. We describe an analogous statements for transcendental maps

which satisfy some growth conditions and a further generalization to general transcen-

dental maps with bounded postsingular set, without any growth assumption. We also

describe some implications for rigidity. The results described here are from a joint work

with Lasse Rempe-Gillen.

Sunto. Studiamo alcuni aspetti della iterazione di una funzione olomorfa f sul piano

complesso C. Nello studio della dinamica complessa in una variabile in molti casi si

può costruire nel piano dinamico una famiglia di curve (chiamate raggi dinamici) dotate

di una dinamica simbolica. Queste curve possono essere messe in relazione con i punti

periodici. Il risultato maggiormente noto è il teorema di Douady e Hubbard nel caso in

cui f è un polinomio. In questa nota descriviamo i risultati ottenuti di recente dall’autore

con Lasse Rempe-Gillen. Consistono in una generalizzazione del teorema di Douady e

Hubbard per funzioni trascendenti per cui esistono i raggi dinamici, e successivamente

per una classe più ampia di mappe trascendenti, per le quali il ruolo dei raggi dinamici

viene svolto da insiemi più generali chiamati dreadlocks.
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ISSN 2240-2829.

153



154 ANNA MIRIAM BENINI

1. Introduction

One-dimensional complex dynamics studies the iterates fn := f◦. . .◦f of a holomorphic

function f over a Riemann surface. Excellent introductory texts are [24], [12], [2]. Rie-

mann surfaces are classified into parabolic (if their universal covering is the complex plane

C), elliptic (if their universal covering is the Riemann sphere Ĉ) or hyperbolic (if their

universal covering is the unit disk is D). By the Schwarz-Ahlfors-Pick Lemma, a holomor-

phic map from a hyperbolic Riemann surface into itself either contracts the hyperbolic

metric or is an isometry, so this case is usually considered as completely understood.

The natural holomorphic maps which act on the Riemann sphere are rational maps,

while the natural map which act on the complex plane are entire maps, either tran-

scendental or polynomials. When studying holomorphic maps of C, since the group of

automorphisms of C is just the set of affine maps, it is usually assumed that the topo-

logical degree of f is at least two. Being transcendental simply means that infinity is an

essential singularity. Polynomials are both entire functions and a special case of rational

maps, so depending on the context one considers them as maps acting on C or on Ĉ. The

orbit of a point z ∈ C is the infinite set O(z) = {z, f(z), f 2(z), . . .}. A very important

role in all of dynamical system is played by invariant sets: a set X is called forward

invariant if f(X) ⊂ X, backward invariant if f−1(X) ⊂ X, and completely invariant if

both conditions hold. For a given set X, its preimage f−1(X) is the set of all points whose

image belongs to X.

A point z is said to belong to the Fatou set F (f) if there exists a neighborhood U of

z such that the family of iterates f |Un is normal (that is, every sequence either diverges

locally uniformly or has a subsequence which converges uniformly on compact sets). The

complement of the Fatou set is called the Julia set J(f) and is the set of points near

which the map exhibits chaotic behaviour. For example, using a theorem by Montel it

is easy to show that the union of the forward iterates of any open set intersecting J(f)

covers the entire plane C minus at most one exceptional point.

There are two main classes of problems that one may want to consider in this setting.

The first class of problems is related to the dynamics of a specific function, or a specific
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class of functions which behave in a dynamically similar way. The second class of problems

is to fix a naturally defined family of functions {fλ}λ∈Λ with Λ a complex manifold and to

try to understand how the dynamics change when the parameter λ varies in Λ. Natural

families of functions are for example the family of unicritical polynomials {z2 + λ}λ∈C of

fixed degree d, the family of rational maps of degree d, or finite dimensional families of

transcendental maps as defined in [18].

Natural questions among the first classes of problems include the following:

• Understand the statistical properties of orbits;

• Understand the structure of invariant sets and their properties (geometric, topo-

logical, measure theoretical...);

• Understand the asymptotic behaviour of orbits, for example study the set of their

accumulation points.

The invariant sets that are most relevant for this note are periodic orbits and the set of

escaping points. A periodic orbit of period p is simply a (minimal) finite set {z0 . . . zp−1}

of p points which are permuted by f ; in the case in which p = 1, we talk about a fixed

point. The set of escaping points I(f) is the set of points whose orbits converge to infinity

under iteration by f . For example points on the real line for the map ez belong to I(ez).

While a periodic orbit is forward invariant- but not backward invariant, since every point

has more than one preimage under f - the set I(f) is completely invariant.

Both periodic points and the escaping set have deep relations to the Julia set. Indeed,

for an entire map f the Julia set J(f) equals both the closure of the set of repelling

periodic points (see the definition later on) and the boundary of the set of escaping points

([24], [19]).

A natural notion which arises when working on problems related to parameter spaces

is the notion of conjugacy. Two maps f, g in the same family are topologically (resp.

quasi-conformally, resp. conformally conjugate) if there exists a homeomorphism (resp. a

quasiconformal, or a conformal map) h such that f ◦h = h◦g. Being conjugate essentially

means that the two maps have similar dynamical features; for example, an f -invariant set

X gives a g-invariant set h(X). The main problem is to understand the structure of the

parameter space, in many different aspects like for example studying the different classes
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of conjugacies, the density of classes of maps with well understood dynamical behaviour,

or topological and geometric aspects of sets which appear naturally in the parameter

space.

The goal of this note is to state some results on the relation between the set of escaping

points and the set of periodic points for transcendental maps. The new results cited in

this note are from a joint paper of the author with Lasse Rempe-Gillen, to appear [8].

The original motivation for this work was that the relation between escaping and periodic

points is very well understood for polynomials, and has led to fundamental results for the

study not only of the dynamics of the individual maps but also for the understanding of

the parameter spaces of unicritical polynomials. Before being able to state the results,

though, we will need some background on the theory of iteration.

1.1. Singular Values and postsingular set. The set of singular values S(f) is the

closure of all asymptotic and critical values for f . Critical values are images of critical

points (for example, c for zd + c) while an asymptotic value a is a point such that there

exists a curve γ(t) : [0,∞) → C such that |γ(t)| → ∞ and f(γ(t)) → a as t → ∞

(for example, 0 is an asymptotic value for ez, and γ can be chosen to be any curve with

Re γ(t) → −∞ as t → ∞). The main characteristic of a singular value s ∈ S(f) is that

for any arbitrary small neighborhood of s there exists an inverse branch of f which is not

well defined and univalent. On the other side,

f : C \ f−1(S(f))→ C \ S(f)

is an infinite degree unbranched covering.

The postsingular set

P (f) :=
⋃

n∈N,s∈S(f)

fn(s)

is the set of iterates of all singular values. Observe that on any simply connected open

set U not intersecting P (f) all branches of f−n are well defined and univalent for all

n. Because of this, asssuming that the postsingular set is bounded gives a (non simply

connected) backward invariant neighborhood of infinity on which all univalent inverse

branches are locally well defined and univalent. When all singular values are critical, like
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for polynomials, S(f) is called the set of critical values, and P (f) is called the postcritical

set.

In this paper we mostly consider maps with bounded postsingular set in order to simplify

the exposition. However, for polynomials the situation is quite well understood also when

the postsingular set is not bounded. Indeed, in this case any critical value whose orbit is

not bounded converges to infinity under iteration, while in the transcendental case singular

values with non-bounded orbits can have any possible behaviour, including having orbits

which are dense in C.

1.2. Periodic points. Let f be an entire map. Periodic points of period p for f are

classified according to their multiplier, that is the derivative of fp calculated at any

periodic point in the orbit. Given that any periodic point of period p is a fixed point for

fp, it is sufficient to state the classification for a fixed point z0. We have the following

cases:

• |f ′(z0)| > 1: z0 is called repelling and there is a neighborhood U(z0) such that

f(U) ⊃ U , and f is conjugated to the linear map z → λz on U (with λ = f ′(z0));

• 0 < |f ′(z0)| < 1: z0 is called attracting and there is a neighborhood U(z0) such that

f(U) ⊂ U , and f is conjugated to the linear map z → λz on U (with λ = f ′(z0));

• |f ′(z0)| = 0: z0 is called superattracting and there is a neighborhood U(z0) such

that f(U) ⊂ U , and f is conjugated to the map z → zd on U (for some d > 1);

• f ′(z0) = e2πip/q with p/q ∈ Q: z0 is called parabolic and there are a certain number

of alternated attracting and repelling directions;

• f ′(z0) = e2πiθ with θ ∈ R \ Q and f linearizable: z0 is called Siegel and there is

a neighborhood U(z0) such that f(U) = U , and f is conjugate to the linear map

z → λz on U (with λ = f ′(z0));

• f ′(z0) = e2πiθ with θ ∈ R\Q and f non-linearizable: z0 is called Cremer and there

is a non-locally connected, completely invariant compact set K 3 z0, called hedge-

hog, on which the dynamics keep some of the features of an irrational rotation.

The classification above and the linearization results can be found in [24]; The hedgehog

case is described in [25]. Since we are interested in the relation between periodic points
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and escaping points, let us point out that there cannot be escaping points near attracting,

superattracting or Siegel periodic points, since in these cases there is a neighborhood of

the periodic point in which the dynamics are bounded.

It is not hard to show that Siegel and (super)attracting periodic points are in the Fatou

set, while Cremer, repelling and parabolic periodic points are in the Julia set.

1.3. Symbolic Dynamics. Let ZN be the space of infinite sequences over the integers.

A natural operator acting on ZN is the left sided shift map σ which sends a sequence

s = s0s1s2 . . . ∈ ZN to the sequence σs = s1s2s3 . . .. There is a natural order on ZN:

s1 > s2 if and only if the first entry in which the two sequences are different is larger for

s1 than for s2. The map σ is locally order preserving, that is, if s1
0 = s2

0 and s1 > s2 it

follows that σs1 > σs2. The preimages σ−1s of a sequence s = s0s1s2 . . . are given by all

sequences of the form as := as0s1s2 . . . where a ∈ Z. In particular σ is an infinity-to-1

map.

Each compact subspace Sd := {0, 1, . . . d − 1}N ⊂ ZN of sequences over d symbols is

forward invariant under σ, and each sequence s ∈ Sd has exactly d preimages under σ−1

which are contained in Sd. So σ|Sd is a d-to-1 map.

Symbolic dynamics can be used to study more general dynamical systems. A classical

way of doing so it to find a (possibly only partial) partition of the phase space X into sets

Xs, each of which is labeled by an integer s. One then studies the set of points which share

a common itinerary s = s0s1s2 . . . under this partition, that is, Gs is the set of points x

in the phase space such that f i(x) ∈ Xsi . Note that itineraries are not necessarily well

defined for all points in X. If one consider the family G consisting of all sets Gs 6= ∅,

the dynamics on the family G is naturally conjugate to the dynamics of the shift map on

sequences, that is,

f(Gs) = Gσs.

An example which is very relevant for the sequel is the example of the map z → zd :

S1 → S1, where S1 is the unit circle. Up to rescaling, one can see this map as the map

θ → dθ : T1 → T1, where T1 denotes the circle of length 1 given by R/Z. When θ ∈ T1 is
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written in d-adic expansion (one has to recall that if θ = 1/dn, it has two different d-adyc

expansions), the map θ → dθ is just the left-sided shift map acting on Sd.

This gives a semi-conjugacy between σ : Sd → Sd and zd : S1 → S1. In this case

it is a semiconjugacy and not a conjugacy because the d-adyc expansion is not unique

for θ = 1/dn. The same conjugacy can be constucted on T1 \ {θ = 1/dn} by using the

following partition: assign the symbol 0 to the open arc between 0 and 1/2, and the

symbol 1 to the arc between 1/2 and 1 = 0 mod Z. Then itineraries with respect to this

partition are defined for all θ /∈ {θ = 1/dn}. For more on symbolic dynamics see [11].

1.4. Relations between escaping points and periodic points for polynomials.

For polynomials of degree d with bounded postsingular set, the set of escaping points

consists of an uncountable family {Gs}Sd of injective curves, called dynamic rays (origi-

nally, external rays), equipped with symbolic dynamics in the sense that f(Gs) = Gσs.

Dynamic rays for polynomials are constructed in the following way [14]. Under the

assumption that f has bounded postsingular set, its filled Julia set (the set of points

with bounde orbits) is compact, connected and full, so its complement (which coincides

with the set of escaping points) has a unique unbounded connected and simply connected

component U which is biholomorphic to C \D by the Riemann Uniformization Theorem.

A theorem by Bottcher [24] ensures that the inverse of the Riemann map conjugates f

on U to the map z → zd . The dynamic ray Gθ for f is defined as the image under the

Riemann map of the straight ray re2πiθ, and then θ can be written in d-adyc expansion

to get the dynamics on Sd.

By definition, dynamic rays are curves Gs : (0,∞)→ C, and Gs(t)→∞ as t→∞. A

dynamic ray is periodic of period p if and only if s is a periodic sequence of period p.

One can relatively easily see that J(f) = ∂U . Since the shift map induces a symbolic

dynamics on U via dynamic rays, it is natural to ask under which hypothesis it is possible

to associate symbolic dynamics to points in J(f) by seeing them as limit points of dynamic

rays. This motivates the definition of the concept of landing.

We say that a dynamic ray Gs lands at a point z0 ∈ C if we have that Gs = Gs ∪ z0

with z0 ∈ C, or equivalently limt→0Gs(t) = z0.
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By Carathéodory-Torhorst’s theorem, the Riemann map extend continuously to ∂D if

and only if ∂U = J(f) is locally connected, so all dynamic rays land (and the landing

point depends continuously on the argument) if and only if J(f) is locally connected.

This gives a complete combinatorial description of the Julia set in the locally connected

case (observe that there are several known examples of non-locally connected Julia sets).

Much more general results can be obtained when one only restricts attention to the

landing of periodic rays. The landing of periodic rays, and the relation between periodic

rays and periodic points is very well understood in the polynomial case. Indeed we have

the following theorem, which has been a keystone for the study of polynomial dynamics

for the past thirty years.

Douady-Hubbard landing theorem. [14], [21], [17] Let f be a polynomial whose post-

critical set P (f) is bounded. Then every periodic ray of f lands at a repelling or parabolic

periodic point, and conversely every repelling or parabolic periodic point of f is the landing

point of at least one periodic dynamic ray, and at most finitely may dynamic rays, all of

which are periodic with the same period.

Douady-Hubbard landing theorem is at the base of the puzzle techniques pioneered by

Yoccoz [21], which are the core of the past and current work around the conjecture that

the Mandelbrot set is locally connected.

Observe that if a periodic ray of period p lands it can only land at periodic points of

period dividing p, since by continuity of f we have that fp(Gs) = Gs implies fp(Gs) = Gs.

It is known (see the snail lemma in [24]) that periodic rays cannot land at Cremer points.

The first part of the theorem essentially relies on an hyperbolic contraction argument

on U , while the second part is more delicate and uses in an essential way the existence of

an attracting basin for infinity.

For generalizations to the case in which P (f) is not bounded, as well as for a statement

of rays landing at points in expansive sets, see [17] and [26].

1.5. Relations between escaping points and periodic points for transcendental

maps. For all of this section we restrict our attention to the class of transcendental entire

functions with bounded set of singular values. This is called the Eremenko-Lyubich class



RAYS, DREADLOCKS AND PERIODIC POINTS 161

and will be denoted as class B. For entire transcendental functions even in class B the

theory is not nearly as complete as for polynomials. In particular, there are examples of

entire transcendental functions in class B for which the path connected components of

the set of escaping points are points ([32]).

On the other side, curves in the escaping set of transncendental functions have been

observed as far as by Fatou in 1926 [20]. The main methods for constructing such curves

in the escaping set (which were originally called hairs) and investigation of the symbolic

dynamics associated to these curves where further developed in [15], [16]. The idea that

they should be considered as an analogue of dynamic rays for polynomials probably started

taking shape in [10]. For the exponential family it was proven in [33] that the entire

escaping sets consists of dynamic rays. Despite the counterexample from [32], one can

put conditions on the order of a function to ensure the existence of curves in the escaping

set endowed with symbolic dynamics (and more, to ensure that all escaping points are

connected to infinity by such a curve) [32]. We recall that the order of a function f is

defined as ρ(f) = lim supr→∞
ln lnM(r,f)

ln r
, where M(r, f) = max|z|=r |f(z)|. For example,

ez
q

has order q.

The most general theorem available about existence of dynamic rays is the following.

Theorem 1.1. Let f be an entire transcendental function with S(f) bounded and which is

a finite composition of functions of finite order with bounded set of singular values. Then

the set of escaping points consists of injective curves {Gs}s∈N⊂ZN satisfying the relation

f(Gs) = Gσs, together with their landing points.

The set N is not completely characterized in the transcendental case, but it always

contains sequences associated to finitely many symbols, in particular periodic sequences

( [1], [29], see also [6]). So the definition of periodic rays makes sense.

Basically in all known examples dynamic rays are constructed using the following strat-

egy. One can find find a (partial) partition of the plane C into infinitely many sets, called

fundamental domains, each of which can be put in correspondence with an integer. The

construction of fundamental domains is relatively canonical and dates back to [18], al-

though they were using it for different purposes. One can then see that for any escaping
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point z its iterates fn(z) belong to the set of fundamental domains for n ≥ n(z) large

enough. In particular, for large enough iterates, itineraries of escaping points with respect

to the partition induced by fundamental domains are well defined. Roughly speaking, one

can then define the set Gs as the set of (escaping) points sharing the same itinerary. The

challenge is to show that at least some of such sets are non empty and that they are

indeed curves; this is where the condition of being a finite composition of functions of

finite order comes into play in [32]. Simpler constructions work for the exponential map

and the sine family, although the underlying idea is the same.

The relation between periodic dynamic rays and periodic points is more subtle. A

novelty about landing of dynamic rays in the transcendental case is that, for some specific

types of itineraries, dynamic rays can land at points which are themselves escaping.

The first part of Douady-Hubbard Landing Theorem is relatively easier to address

than the second part. Indeed, it has been known for some time that if f ∈ B and

P (f) is bounded than periodic rays land ([29]; see also [13]). The proof uses hyperbolic

contraction on the complement of the postsingular set. A more general result holds for

the exponential family [27] and for polynomials [24]: indeed, every periodic dynamic ray

lands unless possibly if its forward orbit intersects the orbit of a singular value. The proof

of the latter theorem for exponentials uses detailed information of the parameter space for

the exponential family, which seems out of reach for more general transcendental maps

at the current state of knowledge.

The second part of Douady-Hubbard Landing Theorem , concerning the question

whether repelling and parabolic periodic points where landing points of periodic rays,

is harder to deal with, even for the exponential family.

Indeed, it has been shown only in [7] that, if f is an exponential map and P (f) is

bounded, then every repelling periodic point is the landing point of at least one and

at most finitely many periodic rays. This type of results has implication for questions

related to rigidity in this family ([4]). The proof in [7] does not need the existence of

an attracting basin of infinity and so opened up the possibility of generalizing Douady-

Hubbard’s theorem to more general transcendental functions in class B. Let us also

mention that it follows from the main theorem in [6] that parabolic periodic points are
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always landing points of periodic rays, under a weaker assumption than having bounded

postsingular set (but still under the assumption from Theorem 1.1 which implies existence

of dynamic rays).

The approach in [8] is different in that it tries to go beyond the concept of dynamic rays.

Indeed, following [29], it is proven that for all functions in class B, with no assumptions

on being composition of functions of finite order, the escaping set consists of unbounded

connected sets, equipped with symbolic dynamics (see also [29]). These sets are called

dreadlocks and, when the function satisfies the growth assumption from Theorem 1.1,

they coincide with the dynamic rays which had been previously defined. As before, a

dreadlock Gs is periodic if s is a periodic sequence. If s is periodic, we say that Gs

lands if Gs \ Gs = {z0} (a more precise, though more technical definition of landing via

accumulation sets is given in [8]).

The construction of dreadlocks is quite natural and follows the strategy described be-

fore. The partial partition of the plane given by fundamental domains is used, with

respect to which itineraries of escaping points are well defined. Then, dreadlocks are

essentially sets of points with the same itinerary, so that the symbolic dynamics comes

for free. When f satisfies the conditions of Theorem 1.1, it has good geometric properties

that one can use to ensure that dreadlocks are curves. When these geometric properties

fail, as in the counterexample in [32], one has to do some additional work to show that

(at least for periodic itineraries) dreadlocks, while not being curves, are still unbounded

connected sets satisfying several useful properties.

The tools developed in [8] allow to prove the following analogue of Douady-Hubbard

theorem which holds for all functions in class B with bounded postsingular set:

Theorem 1.2 (Douady-Hubbard Landing Theorem for Dreadlocks [8]). Let f be an entire

transcendental function with P (f) bounded. Then the set of escaping points consists of

unbounded disjoint connected sets {Gs}s∈N⊂ZN, called dreadlocks, which satisfy the relation

f(Gs) = Gσs. Each periodic dreadlock lands at a repelling or parabolic periodic point, and

each parabolic and repelling periodic points is the landing point of at least one and at most

finitely many periodic dreadlocks, all of which have the same period.
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Since the dreadlocks from Theorem 1.2 coincide with the rays from Theorem 1.1 when

f satisfies the required growth conditions, we get the following corollary for functions

satisfying the hypothesis from Theorem 1.1.

Theorem 1.3 (Douady-Hubbard Landing Theorem for functions with rays). Let f be

an entire transcendental function bounded set of singular values and which is a finite

composition of functions of finite order with bounded set of singular values. Assume

also that P (f) is bounded. Then all periodic dynamic rays land, and all parabolic and

repelling periodic points are landing points of at least one and at most finitely many

periodic dynamic rays, all of the same period.

As mentioned before, the part of landing of periodic rays goes back to [29].

Let us observe that for polynomials the orbit of a critical value is either bounded or

belongs to the escaping set, that is, the set of dynamic rays. The case in which critical

orbits belong to rays is well understood and one can write a corresponding version of

the Douady-Hubbard landing theorem that takes into account the exceptions induced by

escaping critical values. For transcendental maps, instead, P (f) may well be unbounded

(and indeed, even equal to C) without the singular values involved been escaping. So

Theorem 1.2 and 1.3 do not offer a picture which is as complete as the Douady-Hubbard

landing theorem for polynomials. The case in which the postsingular set is unbounded

seems to require drastically new insights into the problem.

Although the study of parameters spaces of transcendental functions with finitely many

singular values is still out of reach from the current state of the art of the field, we hope

that this kind of results will have some influence in the further development of this topic.

1.6. Parameter spaces for one-dimensional families. Consider a naturally defined

family of holomorphic maps F = {fλ}λ∈Λ- for example, the family of unicritical polynomi-

als, or rational maps of a fixed degree, or families of functions with finitely many singular

values as in [18]- whose parameter space is an analytic manifold Λ. There is a dichotomy

between the set of structurally stable parameters and the bifurcation locus. A parameter

λ is structurally stable if fλ is topologically conjugate to all functions fλ′ for all λ′ in a

neighborhood of λ, and belongs to the bifurcation locus otherwise. It is a remarkable
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result that the set of structurally stable parameters is dense in each family considered

above (see [23],[18]). Parameters for which the orbit of all singular values converge to

attracting cycles are called hyperbolic. Parameters which are hyperbolic are structurally

stable. The famous Fatou Conjecture (also called Density of Hyperbolicity Conjecture)

states that when F is a family of polynomials or rational maps of fixed degree d, then

hyperbolic maps are dense. Since the set of structurally stable parameters is open, the

negation of this would be that there are non-hyperbolic components of structurally stable

parameters.

When studying the family of quadratic polynomials {z2 + c}c∈C, a special role is played

by the Mandelbrot set, which is the set of parameters for which the postcritical set is

bounded. The boundary of the Mandelbrot set is exactly the bifurcation locus for this

family.

The most famous conjecture in one-dimensional holomorphic dynamics is whether the

Mandelbrot set is locally connected. In addition to providing a very detailed under-

standing of the structure of this set, an affirmative answer would imply the Density of

Hyperbolicity Conjecture.

The Douady-Hubbard landing theorem is very related to the theory of rigidity, in

particular to many results about local connectivity of the Mandelbrot set at specific classes

of parameters. In particular, together with the Pommerenke-Levin-Yoccoz inequality [21]

it implies that there are no non-hyperbolic components attached to the boundaries of

hyperbolic components. The analogue of Douady-Hubbard Theorem for the exponential

family {ez + λ}λ ∈ C (see [29], [7]) has analogous implications for rigidity of parameters

with bounded postsingular set ([4], [3]).

For more on the relation between rigidity and local connectivity in the case of the

exponential family and of unicritical polynomials see [31].
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