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Abstract. The distinguished names in the title have to do with different proofs of

the celebrated Soap Bubble Theorem and of radial symmetry in certain overdetermined

boundary value problems. We shall give an overeview of those results and indicate some

of their ramifications. We will also show how more recent proofs uncover the path to

some stability results for the relevant problems.
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1. Introduction

In this short survey, the author wishes to give an overview of some results related

to Alexandrov’s Soap Bubble Theorem and Serrin’s symmetry result for overdetermined

boundary value problems. The presentation will be as untechnical as possible: we shall

give no rigorous proofs — but indicate the relevant references to them — preferring to

focus on ideas and their mutual connections. As the title hints, we will mainly concentrate

on the method of integral identities.

We will start by presenting the various proofs of the two results, then we shall explain

how they benefit from one another, and hence examine their relatinship to other areas in

mathematical analysis. We will finally report on some recent stability results that detail

quantitatively how close to the spherical configuration the solution is, if the relevant data

are perturbed.
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2. Alexandrov’s Soap Bubble Theorem and reflection principle

Alexandrov’s Soap Bubble theorem dates back to 1958 and states:

Theorem 1 (Soap Bubble Theorem, [Al1], [Al2]). A compact hypersurface, embedded in

RN , that has constant mean curvature must be a sphere.

The mean curvature H of a hypersurface S of class C2 at a given point on S is the

arithmetic mean of its principal curvatures at that point (see [Re]).

To prove Theorem 1, A. D. Alexandrov introduced what is now known as Alexandrov’s

reflection principle (see [Al1],[Al2]).

The underlying idea behind Alexandrov’s proof is simple: a compact hypersurface S

is a sphere if and only if it is mirror-symmetric in any fixed direction, that is, for any

direction θ ∈ SN−1, there is a hyperplane πθ orthogonal to θ such that S is symmetric

in πθ. The technical tools to carry out that idea pertain to the theory of elliptic partial

differential equations. To understand why, we give a sketch of Alexandrov’s elegant proof.

Let the mean curvature H be constant and suppose by contradiction that S is not

symmetric in the direction θ (by a rotation, we can always suppose that θ is the upward

vertical direction). Then there exists a hyperplane πθ such that at least one of the following

occurrences come about:

(i) the reflection S ′ in πθ of the portion of S that stays below πθ, touches S internally

at some point p ∈ S \ πθ;

(ii) πθ is orthogonal to S at some point p ∈ S ∩ πθ.

In both cases, around p we can locally write S and S ′ as graphs of two real-valued functions

u and u′ of N−1 variables. If (i) holds, u and u′ can be defined on an (N−1)-dimensional

ball centered at p; if (ii) holds instead, u and u′ can be defined on an (N −1)-dimensional

half-ball centered at p, and p belongs to the flat portion of its boundary. In any case, we

have that u′ ≤ u since S ′ stays below S, and also u(p) = u′(p) and ∇u′(p) = ∇u(p).

A partial differential equation now comes about, since both u and u′ satisfy the elliptic

equation

1

N − 1
div

(
∇v√

1 + |∇v|2

)
= H,
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with H constant, being the left-hand side a formula for the mean curvature of the graph

of v. A contradiction then occurs because the solutions of that equation satisfy the strong

comparison principle and the Hopf’s comparison lemma. In fact, in case (i), by the strong

comparison principle, it should be u′ < u, whereas we know that u′(p) = u(p); in case

(ii), p is on the boundary of the half-ball (the flat part) and hence, by the Hopf’s lemma,

it should be that u′θ(p) > uθ(p), being θ the normal to the flat part of the boundary of

the half-ball. That gives the desired contradiction, since we know that ∇u′(p) = ∇u(p).

The reflection principle is quite flexible, since its application can be extended to other

geometrical settings, such as that of Weingarten’s surfaces, considered by Alexandrov

himself.

3. Serrin’s symmetry result and the method of moving planes

Serrin’s symmetry result has to do with certain overdetermined problems for elliptic or

parabolic partial differential equations. In its simplest formulation, it concerns a function

u ∈ C1(Ω) ∩ C2(Ω) satisfying the constraints:

∆u = N in Ω, u = 0 on Γ,(1)

uν = R on Γ.(2)

Here, Ω ⊂ RN , N ≥ 2, is a bounded domain with sufficiently smooth, say C2, boundary

Γ, uν is the outward normal derivative of u on Γ, and R is a positive constant.

Since the Dirichlet problem (1) already admits a unique solution, the additional re-

quirement (2) makes the problem overdetermined and (1)-(2) may not admit a solution

in general. Thus, the remaining data of the problem — the domain Ω — cannot be given

arbitrarily.

In fact, Serrin’s celebrated symmetry result states:

Theorem 2 (Radial symmetry, [Se]). The problem (1)-(2) admits a solution u ∈ C1(Ω)∩

C2(Ω) if and only if, up to translations, Ω is a ball of radius R and u(x) = (|x|2−R2)/2.

This result inaugurated a new and fruitful field in mathematical research at the conflu-

ence of Analysis and Geometry, that has many applications to other areas of mathematics
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and natural sciences. To be sure, that same result was actually motivated by two concrete

problems in Mathematical Physics regarding the torsion of a straight solid bar and the

tangential stress of a fluid on the walls of a rectilinear pipe.

The proof given by Serrin in [Se] extends and refines the idea of Alexandrov. In Serrin’s

setting, the good news is that the hypersurface S ⊂ RN+1 to be considered is already the

graph of a function on Ω; however, the bad news is that S has now a non-empty boundary.

Moreover, the expected spherical symmetry concerns the base-domain Ω, rather then the

hypersurface S: as a matter of fact, Serrin’s statement claims that S has to be (a portion

of) a (spherical) paraboloid and not a sphere.

In his 1971’s proof, J. Serrin brilliantly adapted the reflection principle, by only con-

sidering the reflecting hyperplains πθ orthogonal to horizontal directions θ. The critical

occurrences (i) and (ii) then take place in a rather modified fashion: in both cases the

point p belongs to ∂S = S ∩ (∂Ω× R) and is not a relatively internal point in S. Thus,

the strong comparison principle is ruled out. Nevertheless, in case (i), the Hopf’s lemma

can still be applied, giving the desired contradiction.

Even so, there is an additional difficulty that one has to deal with in case (ii): the

Hopf’s comparison lemma can no longer be applied. This is due to the fact that p is

not only in ∂S, but its projection p onto Ω is placed at a corner on the boundary of the

projection Ω′ of S ′ onto Ω — Ω′ being the domain of the possible application of Hopf’s

lemma.

To circumvent this obstacle, Serrin established what is now known as Serrin’s corner

lemma and concerns the first and second derivatives at p of u′ and u in the directions `

entering Ω′ from p: it must hold that either u′`(p) < u`(p) or u′``(p) < u``(p) for some `.

After further calculations, this lemma provides the desired contradiction.

This modification of Alexandrov’s reflection principle is what is now called the method

of moving planes. The method is very general since, as pointed out by Serrin himself, it

applies at least to elliptic equations of the form

a(u, |∇u|) ∆u+ h(u, |∇u|) 〈∇2u∇u,∇u〉 = f(u, |∇u|),
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provided some sufficient conditions are satisfied by the coefficients a, h, and f (see [Se] for

details) and, more importantly, under the assumption that non-positive solutions are con-

sidered (solutions of (1) are authomatically negative by the strong maximum principle).

Further extensions have also been given during the years by many authors.

4. Weinberger’s proof of Serrin’s result

In the same issue of the journal in which [Se] is published, H. F. Weinberger [We] gave

a different proof of Theorem 2, based on integration by parts and the Cauchy-Schwarz

inequality.

Weinberger’s proof profits of the fact that the so-called P-function associated to (1),

defined by

(3) P =
1

2
|∇u|2 − u,

is sub-harmonic in Ω, since

(4) ∆P = |∇2u|2 − 1

N
(∆u)2 ≥ 0,

by the Cauchy-Schwarz inequality applied, for instance, to the two N2-dimensional vectors

formed, respectively, by the entries of the identity matrix and those of the hessian matrix

∇2u. Since P = R2/2 on Γ, then either P ≡ R2/2 or P < R2/2 on Ω, by the strong

maximum principle. However, the latter occurrence is ruled out by directly calculating

that

(5)

∫
Ω

(R2/2− P ) dx = 0.

This formula follows by applying the divergence theorem and integration by parts formulas

in various forms. Indeed, from (1) and (2), we have:

(6)

∫
Ω

P dx =

(
1

2
+

1

N

) ∫
Ω

|∇u|2dx;

R |Γ| =
∫

Γ

uν dSx = N |Ω|; (N + 2)

∫
Ω

|∇u|2 dx =

∫
Γ

u2
ν (x · ν) dSx.

The second formula sets the correct value for R; the third one is a consequence of the

well-known Rellich-Pohozaev identity ([Po]).
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Thus, it must hold that P ≡ R2/2 on Ω, which implies that ∆P ≡ 0 in Ω. This means,

in turn, that the inequality in (4) holds with the sign of equality, that is the hessian

matrix ∇2u is proportional to the identity matrix. Then, it is easy to show that u must

equal a quadratic polynomial of the form

q(x) =
1

2
(|x− z|2 − a),

for some z ∈ RN and a ∈ R. Since u = 0 on Γ, we can compute that a = R2, and this

implies that Γ is a sphere centered at z and with radius R.

Weinberger’s argument is very elegant, but so far is known to work only for the simple

setting (1)-(2) or some restricted extensions of it. In particular, it is not known to work

if we replace N in (1) by a non-constant function of u.

5. Reilly’s proof of the Soap Bubble Theorem

In 1982, R. C. Reilly found a proof of the Soap Bubble Theorem that bears a resem-

blance to Weinberger’s argument.

The key idea is to regard the hypersurface S as the zero-level surface of the solution u

of (1), that is S = Γ, and to observe that

(7) ∆u = uνν + (N − 1)H uν on Γ.

In this formula, that holds on any regular level surface of a function u ∈ C2(Ω), we agree

to still denote by ν the vector field ∇u/|∇u| (that indeed coincides on Γ with the unit

normal field).

As in Section 4, the radial symmetry of Ω is obtained by showing that ∆P ≡ 0 in Ω.

In fact, if H ≡ H0 on Γ for some constant H0, one can show that∫
Ω

∆P dx ≤ 0.

This inequality follows by using the divergence theorem and by applying a set of formulas

similar to (6): ∫
Γ

Pν dSx = N |Ω| −
∫

Γ

H u2
ν dSx;

N |Ω|H0 = |Γ|;
(
N |Ω|

)2 ≤ |Γ|
∫

Γ

u2
ν dSx.
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In the first identity, we use (7) and the divergence theorem. The second formula sets the

correct value for the constant H0 and is a consequence of Minkowski’s identity,∫
Γ

H (x · ν) dSx = |Γ|,

a well-known result in differential geometry (see [Re] for an elementary proof). The last

inequality is clearly an application of Hölder’s inequality.

Notice that Reilly’s argument leaves open the possibility to extend the Soap Bubble

Theorem to more general regularity settings, provided a weaker definition of mean curva-

ture is at hand.

Extensions of Reilly’s ideas to the case of the symmetric invariants of the principal

curvatures of Γ can be found in [Ro], where a proof of Heintze-Karcher inequality,∫
Γ

dSx
H
≥ N |Ω|,

is also given, in the same spirit.

6. The isoperimetric inequality for the torsional rigidity

As an interlude, we present a connection of Serrin’s problem (1)-(2) to a classical result

in shape optimization. In fact, as also referred to in [Se], the solution of (1) has to do

with an important quantity in elasticity: the so-called torsional rigidity τ(Ω) of a bar of

cross-section Ω (see [So, pp. 109-119]) that, with the necessary normalizations, can be

defined as the maximum of the quotient

Q(v) =

(
N
∫

Ω
v dx

)2∫
Ω
|∇v|2 dx

,

among all the non-zero functions v in the Sobolev space W 1,2
0 (Ω). In fact, it turns out

that

(8) τ(Ω) = Q(u) =

∫
Ω

|∇u|2 dx = −N
∫

Ω

u dx.

The following statement is known as the Saint Venant’s Principle:

Among sets having given volume the ball maximizes τ(Ω).
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One proof of this principle hinges on rearrangement tecniques (see [PSz]).

Here, we shall give an account of the relationship between (1)-(2) and the Saint Venant

Principle. In fact, once the existence of a maximizing set Ω0 is established, one can show

that the solution of (1) in Ω0 also satisfies (2) with Γ = ∂Ω0.

One way to see that is to introduce the technique of shape derivative. That consists

in hunting for the optimal domain within a one-parameter family {Ωt}t∈R of domains

that evolve according to a prescribed rule. Thus, if we agree that Ω0 is the domain

that maximizes τ(Ωt) among all the domains in the family that have prescribed volume

|Ωt| = V , then the method of Lagrange multipliers informs us that there is a number λ

such that

T (t)− λ [V − V (t)] ≤ T (0) for any t ∈ R,

and hence

(9) T ′(0) + λV ′(0) = 0,

where we mean that T (t) = τ(Ωt) and V (t) = |Ωt|.

A convenient way to construct the evolution of the domains Ωt of the family is to let

each of them be the imageMt(Ω) of a fixed domain Ω = Ω0 by a mappingMt : RN → RN

belonging to a family such that:

(10) M0(x) = x, M′
0(x) = R(x),

where the “prime” means differentiation with respect to t.

Thus, we can consider the solution u = u(t, x) of (1) in Ω = Ωt and obtain:

T (t) = −N
∫

Ωt

u(t, x) dx and V (t) =

∫
Ωt

dx.

The derivatives of T and V can be computed by applying the theory of shape derivatives,

stemmed from Hadamard’s variational formula (see [HP, Chapter 5]). In fact, by a

theorem of J. Liouville, we have that

T ′(0) = −N
∫

Ω0

u′(x) dx−N
∫

Γ0

u(x)R(x) · ν(x) dSx
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and

(11) V ′(0) =

∫
Γ0

R(x) · ν(x) dSx,

where Γ0 = ∂Ω0 and we have set u(x) = u(0, x) and denoted by u′(x) the derivative of

u(t, x) with respect to t, evaluated at t = 0. Moreover, u′ turns out to be the solution of

the Dirichlet problem

∆u′ = 0 in Ω0, u′ = ∇u · R on Γ0.

Also, since u = 0 on Γ0 and u′ is harmonic in Ω0, we calculate that

(12) T ′(0) = −N
∫

Ω0

u′ dx = −
∫

Ω0

u′∆u dx = −
∫

Γ0

u′ uν dSx,

after an application of Gauss-Green’s formula.

Next, we choose

R(x) = φ(x) ν(x),

where φ is any compactly supported continuous function and ν is a proper extension

of the unit normal vector field to a tubular neighborhood of Γ (for instance the choice

ν(x) = ∇δΓ(x), where δΓ(x) is the distance of x from Γ, will do).

Therefore, by this choice of R, putting together (9), (11), and (12) gives that∫
Γ0

(u2
ν − λ)φ dSx = 0.

Since φ is arbitrary, we infer that u2
ν ≡ λ on Γ0 and we compute λ = R2.

Theorem 2 thus confirms Saint Venant’s principle. A sufficient regularity assumption

that guarantees that this argument runs is that Γ0 is locally the graph of a differentiable

function with Hölder continuous derivatives.

7. Dual formulation and quadrature domains

In [PS], the following characterization is proved.

Theorem 3 (Dual formulation: harmonic domain). A function u ∈ C1(Ω) ∩ C2(Ω) is

solution of (1)-(2) if and only if the following mean value property

(13)
1

|Ω|

∫
Ω

h dx =
1

|Γ|

∫
Γ

h dSx
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holds for any harmonic function h ∈ C0(Ω) ∩ C2(Ω).

The proof is a straightforward consequence of Gauss-Green’s formula for laplacians.

A domain Ω such that (13) holds for any harmonic function is named a harmonic

domain (see [RS]). Thus, the following corollary ensues.

Corollary 4. The euclidean ball is the only bounded harmonic domain in RN .

Theorem 3 and Corollary 4 are due to L. Payne and P. W. Schaefer [PS], who also

provide a proof of Theorem 2 that modifies Weinberger’s argument and gets rid of the

use of the maximum principle for P .

In [PS], (13) is regarded as a dual formulation of the overdetermined problem (1)-(2),

since it entails a linear functional,

H(Ω) 3 h 7→ L(h) =
1

|Ω|

∫
Ω

h dx− 1

|Γ|

∫
Γ

h dSx,

defined on the set H(Ω) of functions in C0(Ω) ∩ C2(Ω) that are harmonic in Ω.

The identity (13) recalls the well-known Gauss mean value theorems for harmonic func-

tions: if Ω is a ball and p its center, then

h(p) =
1

|Ω|

∫
Ω

h dx and h(p) =
1

|Γ|

∫
Γ

h dSx

for any harmonic function h ∈ C0(Ω)∩C2(Ω). It is interesting to remark that each mean

value property characterizes the ball (or the sphere) with respect to the class of harmonic

functions, as (13) does (see [PS], [Ku]).

The dual formulation can also be connected to the theory of quadrature domains in-

troduced by D. Aharonov and B. Gustafsson in the 1970’s (see [AS], [GS]). A bounded

domain Ω in the complex plane C is a (classical) quadrature domain if there exist finitely

many points p1, . . . , pm ∈ Ω and coefficients cjk ∈ C so that

(14)

∫
Ω

f(z) dxdy =
m∑
j=1

nj∑
k=0

cjkf
(k)(pj)

for any holomorphic function f in Ω; here, f (0) = f and f (k) denotes the k-th derivative

of f .
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Formula (14) is called a quadrature identity. For instance, the ball centered at p is a

quadrature domain that corresponds to m = 1, n1 = 0 and p1 = p. The term “quadrature”

thus refers to the fact that, in a quadrature domain Ω, (14) provides an exact quadra-

ture formula to compute the integral on the left-hand side. A remarkable fact is that

quadrature domains have applications to problems in Mathematical Physics such as the

Hele-Shaw problem in fluid dynamics and other free-boundary and/or inverse problems

(see [GS] and the references therin).

The notion of quadrature domain can be extended in two ways. One can replace the

finite sum in (14) by the integral ∫
f(z) dµ,

where µ is some signed measure (e.g., in (14) µ would be the linear combination of Dirac

deltas and their derivatives at given points). Moreover, one can establish a generalization

to higher-dimensional domains, by replacing holomorphic functions by harmonic functions

— in this case, the domain is often called a harmonic quadrature domain. Therefore, a

harmonic domain — that is satisfying (13) for any h ∈ H(Ω) — is a harmonic quadrature

domain relative to (a multiple of) the surface measure on Γ.

8. Fundamental identities

In this section, we will show that Weinberger’s and Reilly’s proofs can be further re-

fined to encode all the information given in Serrin’s and Alexandrov’s problems into two

identities. In the following two results, we use the defininitions:

(15) R =
N |Ω|
|Γ|

, H0 =
|Γ|
N |Ω|

and q(x) =
1

2
|x− z|2 − a, x ∈ RN ,

where z ∈ RN and a ∈ R are given parameters.

Theorem 5 (Fundamental identity for Serrin’s problem). Let Ω ⊂ RN be a bounded

domain with boundary Γ of class C1,α, 0 < α ≤ 1.

Then, the solution u of (1) satisfies identity:

(16)

∫
Ω

(−u)

{
|∇2u|2 − (∆u)2

N

}
dx =

1

2

∫
Γ

(
u2
ν −R2

)
(uν − qν) dSx.
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The identity is announced in [MP1] and proved in [MP2]. Its proof is obtained by

polishing the arguments in [We] and [PS] and juggling around with integration by parts.

Theorem 6 (Fundamental identity for the Soap Bubble Theorem). Let Ω be a bounded

domain with boundary Γ of class C2 and let u be the solution of (1).

Then, it holds true that

(17)
1

N − 1

∫
Ω

{
|∇2u|2 − (∆u)2

N

}
dx+

1

R

∫
Γ

(uν −R)2dSx =∫
Γ

(H0 −H) (uν − qν)uν dSx +

∫
Γ

(H0 −H) (uν −R) qν dSx.

The identity is proved in [MP2] by slightly modifying one that was proved in [MP1].

Its proof is obtained by polishing the argument in [Re].

From identity (16) it is clear that, if the right-hand side is zero — and that surely

occurs if (2) is in force — then ∆P ≡ 0 owing to (4), and hence radial symmetry ensues,

as already observed.

Since both summands at the left-hand side are non-negative, the same conclusion results

from (17), if its right-hand side is null — and that holds if H is constant. It should also

be noticed that H ≡ H0 implies independently that u satisfies (2).

One more comment is in order. If we turn back to Section 6, we see that

T ′(0) +R2 V ′(0) =
1

2
(u2

ν −R2) (uν − qν),

if we choose φ = (qν − uν)/2, and hence (16) can be written as:

(18)

∫
Ω

(−u)

{
|∇2u|2 − (∆u)2

N

}
dx =

∫
Γ

[T ′(0) +R2 V ′(0)] dSx.

Ergo, this identity tells us something more about the Saint Venant Principle.

Theorem 7. A domain Ω is a ball if the function

R 3 t 7→ τ(Ωt) +R2 (V − |Ωt|)

obtained by modifing Ω by the rule (10) with R = R∗ and

R∗ =
1

2
(qν − uν) ν
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has a critical point at t = 0.

Actually, it is enough that the derivative is non-positive at t = 0. Thus, the flow

generated by that R∗ is quite a priviledged one.

Theorem 7 seems to be new.

9. Stability: in the wake of Alexandrov and Serrin

In this and the next section, we will present recent results on the stability for the radial

configuration in the Soap Bubble Theorem and Serrin’s problem. Roughly speaking, the

question is how much a hypersurface Γ is near a sphere, if its mean curvature H — or,

alternatively, the normal derivative on Γ of the solution u of (1) — is near a constant

in some norm. Technically speaking, one may look for two concentric balls Bρi and Bρe ,

with radii ρi and ρe, ρi < ρe, such that

(19) Γ ⊂ Bρe \Bρi

and

(20) ρe − ρi ≤ ψ(η),

where ψ : [0,∞) → [0,∞) is a continuous function vanishing at 0 and η is a suitable

measure of the deviation of uν or H from being a constant.

In this section, I will briefly give an account of the results in this direction obtained by

means of quantitative versions of the reflection principle or the method of moving planes.

The problem of stability for Serrin’s problem has been considered for the first time in

[ABR]. There, for a C2,α-regular domain Ω, it is proved that, if u is the solution of (1),

there exist constants C, ε > 0 such that (19) and (20) hold for

ψ(η) = C | log η|−1/N and η = ‖uν − c‖C1(Γ) < ε,

for some constant c. It is important to observe that the validity of that inequality extend

to the case in which at the right-hand side of the Poisson’s equation in (1) the number

N is replaced by a locally Lipschitz continuous function f(u). In this case, only positive

solutions are considered and the constants C, ε also depend on f and the regularity of Γ.
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In the same general framework, the stability estimate of [ABR] has been improved in

[CMV]. There, it is in fact shown that (19) and (20) hold for

ψ(η) = C ητ and η = sup
x,y∈Γ
x 6=y

|uν(x)− uν(y)|
|x− y|

< ε.

The exponent τ ∈ (0, 1) can be computed for a general setting and, if Ω is convex, is

proved to be arbitrarily close to 1/(N + 1).

The only quantitative estimate for symmetry in the Soap Bubble Theorem, based on

Alexandrov’s reflection principle, is proved in [CV] and is optimal. There, it is shown

that, if Γ is an N -dimensional, C2-regular, connected, closed hypersurface embedded in

RN , there exist constants C, ε > 0 such that (19) and (20) hold for

ψ(η) = C η and η = max
Γ

H −min
Γ
H < ε.

The two constants depend on N , upper bounds for the principal curvatures of Γ, and |Γ|.

The result is optimal, because is attained for ellipsoids.

We conclude this section by giving a brief outline of the arguments used to obtain

stability for Serrin’s problem. The arguments are substantially those of [ABR], that have

been refined in [CMS] and [CMV], and adapted to the situation of the Soap Bubble

Theorem in [CV].

The idea is to fix a direction θ and define an approximate set Xη ⊂ Ω, mirror-symmetric

with respect to a hyperplane πθ orthogonal to θ, that fits Ω “well”, in the sense that it

is the maximal θ-symmetric set contained in Ω and such that its order of approximation

of Ω can be controlled by C ψ(η). It turns out that this approximation process does not

depend on the particular direction θ chosen. Thus, one defines an approximate center

of symmetry p as the intersection of N mutually orthogonal hyperplanes πθ1 , . . . , πθN of

symmetry. It then becomes apparent that, in any other direction θ, the approximation

deteriorates only by replacing C by a possibly larger constant. It is thus possible to define

the desired balls in (19) by centering them at p.

Technically, the control of the approximation by C ψ(η) is made possible by the applica-

tion of Harnack’s inequality and Carleson’s (or boundary Harnack’s) inequality, which are

the quantitative versions of the already mentioned maximum principle, Hopf’s lemma, and



ALEXANDROV, SERRIN, WEINBERGER, REILLY 135

Serrin’s corner lemma. The improvement obtained in [CMV] is the result of a refinement

of Harnack’s inequality in suitable cones.

10. Stability: in the wake of Reilly and Weinberger

Quantitative inequalities for the Soap Bubble Theorem and Serrin’s problem can also

be obtained by following the tracks of Reilly’s and Weinberger’s proofs of symmetry.

In [CM], based on the proof of Heintze-Karcher’s inequality given in [Ro], it is shown

that (19)-(20) hold for

ψ(η) = C η
1

2(N+1) and η = max
Γ
|H0 −H| < ε,

for some positive constants C, ε; ε should be sufficiently small so as to guarantee that Γ

is strictly mean convex (that means that H > 0 on Γ) — the realm of validity of Heintze-

Karcher’s inequality. The exponent is not optimal; however, an estimate is also given in

[CM] that gives a finer description of hypersurfaces having their mean curvature close to

a constant. In fact, such an estimate specifies how Γ can be close to the boundary of a

disjoint union of balls.

That result has been improved in various directions in [MP1]. In fact, based on a

version of identity (17), (19)-(20) are shown to hold for some positive constants C, ε and

ψ(η) = C ητN and η =

∫
Γ

(H0 −H)+ dSx < ε,

where τN = 1/2 for N = 2, 3 and τN = 1/(N + 2) for N ≥ 4. Here we mean (t)+ =

max(t, 0) for t ∈ R.

That approximation is not restricted to the class of strictly mean convex hypersurfaces,

but is valid for C2-regular hypersurfaces, as in [CV]. Differently from [CV] and [CM], it

replaces the uniform deviation from H0 by a weaker average deviation and yet, compared

to [CM], it improves the relevant stability exponent.

A further advance has been recently obtained in [MP2]. In fact, it holds that

(21) ρe − ρi ≤ C ‖H0 −H‖τN2,Γ if ‖H0 −H‖2,Γ < ε,

where τN = 1 for N = 2, 3 and τN = 2/(N + 2) for N ≥ 4 — that is the stability

exponent doubles. Therefore, for N = 2, 3 an optimal Lipschitz inequality (as in [CV]) is
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established, even for a weaker average deviation; it seems realistic to expect that a similar

Lipschitz estimate holds also for N ≥ 4.

In [MP2], an inequality involving the following slight modification of the so-called

Fraenkel asymmetry,

A(Ω) = inf

{
|Ω∆Bx|
|Bx|

: x center of a ball Bx with radius R

}
,

has also been proved:

A(Ω) ≤ C ‖H0 −H‖2,Γ.

Here, Ω∆Bx denotes the symmetric difference of Ω and Bx, and R is the constant defined

in (15). This inequality holds for any N ≥ 2. Under sufficient assumptions, the number

A(Ω) can be linked to the difference ρe − ρi (see [MP2]); however, the resulting stability

inequality is poorer than (21).

At the end of this section, we shall explain how these results have been made possible

by parallel estimates for Serrin’s problem.

The first improvement of the logarithmic estimate obtained in [ABR] for problem (1)-

(2) has been given in [BNST]. There, the idea of working on integral identities and

inequalities has also been put in action for the first time. By a combination of the ideas

of Weinberger and the use of (pointwise) Newton’s inequalities for the hessian matrix ∇2u

of u, the solution u of (1) is shown to satisfy (19)-(20) for

ψ(η) = C ητN and η = max
Γ
|uν − c| < ε,

where c is some reference constant. In [BNST], it is also considered the possibility to

measure the deviation of uν from a constant by the L1-norm, that is with η = ‖uν − c‖1,Γ

and, by assuming an appropriate a priori bound for |∇u| on Γ, it is shown that Ω can be

approximated in measure by a finite number of mutually disjoint balls Bi. The obtained

exponent is τN = 1/(4N + 9).

Recently, that approach has been greatly improved in [Fe] where, rather than by (19)

and (20), the closeness of Ω to a ball is measured by the asymmetry A(Ω):

A(Ω) ≤ C ‖uν −R‖2,Γ.
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Turning back to an approximation of type (19)-(20), the following formula is derived

in [MP2]:

(22) ρe − ρi ≤ C ‖uν −R‖
2

N+2

2,Γ if ‖uν −R‖2,Γ < ε.

This inequality clearly makes better than those in [BNST] and [CMV], even if we replace

the uniform norm or the Lipschitz semi-norm by an L2-deviation.

As promised, we conclude this section by giving an outline of the proof of (22) and (21),

by drawing the reader’s attention on how the results benefit from the sharp formulas (16)

and (17) and their interaction.

To simplify matters, it is convenient to re-write (16) in terms of the harmonic function

h = q − u: it holds that

(23)

∫
Ω

(−u) |∇2h|2 dx =
1

2

∫
Γ

(R2 − u2
ν)hν dSx.

Notice that h = q on Γ and hence the oscillation of h on Γ can be bounded from below

by ρe − ρi:

max
Γ

h−min
Γ
h =

1

2
(ρ2
e − ρ2

i ) ≥
1

2
(|Ω|/|B|)1/N(ρe − ρi).

Thus, (19)-(20) will be obtained if can bound that oscillation in terms of the left-hand

side of (23). In fact, its right-hand side can be easily bounded in terms of the desired

L2-deviation of uν from R.

To carry out this plan, the following inequalities, proved in [MP1, Lemma 3.3], are

decisive:

max
Γ

h−min
Γ
h ≤ C

(∫
Ω

h2dx

) 1
N+2

≤ C

(∫
Ω

|∇h|2dx
) 1

N+2

.

In the first inequality, it is crucial that h is harmonic in Ω, because the mean value

property for harmonic functions on balls is used; the second inequality follows from an

application of the Poincaré inequality, since we can choose a so that h has average zero

on Ω.

Next, notice that the obtained inequalities for the oscillation of h and (23) do not depend

on the particular choice of z ∈ RN . A good choice for z turns out to be a minimum (or
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any critical) point of u, so that it is guaranteed that z ∈ Ω. That choice has yet a more

important benefit: since now ∇h(z) = 0, the Hardy-Poincarè-type inequality

(24)

∫
Ω

v(x)2dx ≤ C

∫
Ω

(−u)|∇v(x)|2dx,

that holds for any harmonic function v that is zero at some point, can be applied to each

first partial derivative of h so as to eventually obtain that

max
Γ

h−min
Γ
h ≤ C

(∫
Ω

(−u)|∇2h|2dx
) 1

N+2

.

Inequality (24) can be derived by using an inequality proved in [BS] or [HS] (see [Fe] or

[MP2] for details).

The last inequality and (23) easily give a stability bound in terms of the deviation

η = ‖uν−R‖1,Γ. Nevertheless, one can gain a better estimate by observing that, if uν−R

tends to 0, also hν does. Quantitavely, this fact can be expressed by the inequality

(25) ‖hν‖2,Γ ≤ C ‖uν −R‖2,Γ,

that can be derived from [Fe]. Thus, (22) will follow by using this inequality, after an

application of Hölder’s inequality to the right-hand side of (23).

By keeping track of the constants C and ε in the various inequalities, one can show that

those in (22) only depend on N , the diameter of Ω and the radii of the optimal interior

and exterior touching balls to Γ (see [MP2]).

In order to prove (21), we use the new identity (17), that also reads as:

(26)
1

N − 1

∫
Ω

|∇2h|2dx+
1

R

∫
Γ

(uν −R)2dSx =

−
∫

Γ

(H0 −H)hν uν dSx +

∫
Γ

(H0 −H) (uν −R) qν dSx.

In fact, discarding the first summand at its left-hand side and applying Hölder’s inequality

to the two terms at its right-hand side and (25) thereafter, yields that

‖uν −R‖2,Γ ≤ C ‖H0 −H‖2,Γ.
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Inequality (21) then follows again from (26) and the estimate

max
Γ

h−min
Γ
h ≤ C

(∫
Ω

|∇2h|2 dx
)τN/2

already obtained in [MP1].

11. Stability for a harmonic domain

We conclude this paper by deriving a stability inequality for the mean value property

established in (13), in the spirit of that given in [CFL] for the classical Gauss mean value

property for harmonic functions on balls in RN .

We start by writing an identity,

1

|Ω|

∫
Ω

h dx− 1

|Γ|

∫
Γ

h dSx =
1

N |Ω|

∫
Γ

h (uν −R) dSx,

that holds at least for any function h ∈ C2(Ω)∩C0(Ω) which is harmonic in Ω, if u is the

solution of (1). The identity can be easily obtained by an application of Gauss-Green’s

formula and the use of (1).

The measure of the deviation of the two mean values from one another can be obtained

by taking the norm of the linear functional L defined at the left-hand side of the identity

on some relevant normed space. We may for instance consider the Hardy-type spaceHp(Ω)

of harmonic functions in Ω, whose trace on Γ is a function in Lp(Γ). Thus, we compute

that

‖L‖p = sup

{∣∣∣∣ 1

|Ω|

∫
Ω

h dx− 1

|Γ|

∫
Γ

h dSx

∣∣∣∣ : h ∈ Hp(Ω), ‖h‖p,Γ ≤ 1

}
=

1

N |Ω|
‖uν −R‖p′,Γ,

where p′, as usual, is the conjugate exponent of p. These computations work for any

p ∈ [1,∞].

Therefore, by choosing p = 2, we obtain the inequality

ρe − ρi ≤ C ‖L‖
2

N+2

2 if ‖L‖2 < ε

from (22). This inequality is new.
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