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Abstract. We present some recent results obtained in [13] and [14] on the isoperimet-

ric problem in a class of Carnot-Carathéodory spaces, related to the Heisenberg group.

This is the framework of Pansu’s conjecture about the shape of isoperimetric sets. Two

different approaches are considered. On one hand we describe the isoperimetric problem

in Grushin spaces, under a symmetry assumption that depends on the dimension and

we provide a classification of isoperimetric sets for special dimensions. On the other

hand, we present some results about the isoperimetric problem in a family of Riemann-

ian manifolds approximating the Heisenberg group. In this context we study constant

mean curvature surfaces. Inspired by Abresch and Rosenberg techniques on holomorphic

quadratic differentials, we classify isoperimetric sets under a topological assumption.

Sunto. Presentiamo risultati recenti ottenuti in [13] e [14] sul problema isoperimetrico in

spazi di Carnot-Carathéodory legati al gruppo di Heisenberg. Questo è il contesto della

congettura di Pansu sulla forma degli insiemi isoperimetrici. Presentiamo due diversi

approcci. Da un lato, descriviamo il problema isoperimetrico negli spazi di Grushin, sotto

un’ipotesi di simmetria che dipende dalla dimensione. In questo contesto, forniamo una

classificazione degli insiemi isoperimetrici, valida per specifiche dimensioni. Dall’altro

lato, presentiamo alcuni risultati sul problema isoperimetrico in una famiglia di varietà

Riemanniane che approssimano il gruppo di Heisenberg. In questo contesto, studiamo

superfici a curvatura media costante. Ispirati dalle tecniche di Abresch and Rosenberg sui

differenziali quadratici olomorfi, classifichiamo gli insiemi isoperimetrici sotto un’ipotesi

topologica.
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1. Introduction

Let M be a n-dimensional manifold, V a volume and P a perimeter on M . The isoperi-

metric problem relative to V and P consists in studying existence, qualitative properties

and, if possible, classifying the minimizers of

(1) inf {P (E), E ⊂M is V -measureable and V (E) = v} ,

for a given volume v > 0. Minimizers of (1) are called isoperimetric sets, and their

existence and classification is equivalent to determine the best constant C > 0 in the

isoperimetric inequality. This consists in finding a number ν = ν(M,P, V ) ∈ N and a

constant C = C(M,P, V ) > 0 such that, for any E ⊂M with V (E) <∞, it holds

(2) P (E)ν ≥ CV (E).

Isoperimetric inequalities turn out to be useful in a number of problems in geometry and

analysis on manifolds (and on more general metric spaces), that ranges from characterizing

isometries (see Ahlfors [3] ), to the study of heat kernels (see Chavel [7]).

If M is a space form (Euclidean space Rn, n-sphere and n-hyperbolic space), endowed

with the Riemannian volume and perimeter, isoperimetric sets are metric balls. We refer

e.g. to Hurwitz [20] for the first proof in the 2-dimensional Euclidean space, De Giorgi [9]

for the most general formulation in M = Rn, and Schmidt [32] for the first proof in the

other cases. Moreover, the isoperimetric inequality holds for ν = n
n−1

. As we shall see in

what follows (see Section 1.1), the isoperimetric property of metric balls fails to hold in

more general settings and the exponent ν in the isoperimetric inequality may change.

In this note, we resume some recent results obtained in [13] and [14] on the isoperi-

metric problem in a class of Carnot-Carathéodory spaces. These are metric structures

on Rn, arising from the study of hypoelliptic operators and from control theory. Let

X = {X1, . . . , Xr} be a family of self-adjoint vector fields defined in an open set Ω ⊂ Rn.

Associated with X , we define the Carnot-Carathéodory distance dX between two points

in Ω as the shortest length of horizontal curves connecting them, i.e., absolutely contin-

uous curves that are almost everywhere tangent to the distribution of planes generated

by X1, . . . , Xr, called the horizontal distribution. Under the so-called bracket generating
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condition, any two points can be connected by means of horizontal curves (see Chow [8]

and Rashevsky [28]), and dX defines a metric structure on Ω. In this case we say that X

defines a Carnot-Carathéodory structure on Rn. The natural notion of perimeter on such

a structure, endowed with the Lebesgue measure Ln, has been introduced by Capogna,

Danielli and Garofalo in [5], following the De Giorgi definition of perimeter (see also [16],

[17]): the X -perimeter of a set E ⊂ Rn, satisfying Ln(E) <∞ is

(3) PX (E) = sup
{∫

E

r∑
i=1

Xiϕi(x) dx : ϕ ∈ C1
c (Rn;Rr), max

x∈Rn
|ϕ(x)| ≤ 1

}
.

Notice that the X -perimeter corresponds to the “metric” perimeter introduced by Miranda

in [21] for more general metric spaces.

An important example is given by the Heisenberg perimeter, for which the isoperimet-

ric problem is still unsolved and the famous Pansu’s conjecture has not been proved (see

Section 1.1 below). In this paper, we study perimeters that are related to the Heisen-

berg one. Two different approaches are presented. On one hand we present the results

obtained in [14] about the isoperimetric problem in Grushin spaces, under a symmetry

assumption that depends on the dimension, and allows the approach via rearrangements

techniques, see [24]. On the other hand, we present the results obtained in [13] for a

Riemannian approximation of the Heisenberg group. In this context we study constant

mean curvature surfaces, inspired by Abresch and Rosenberg techniques on holomorphic

quadratic differentials [1, 2].

1.1. The Heisenberg isoperimetric problem. The Heisenberg group H1 is M = R3

endowed with the following non-commutative Lie group operation:

(4) (x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2(x′y − xy′)) , (x, y, t), (x′y′t′) ∈ R3.

We call left-translations the mappings (x, y, t) 7→ τ(x′,y′,t′) = (x, y, t) ∗ (x′, y′, t′), for

(x′, y′, t′) ∈ H1. The Heisenberg Lie algebra is h = span{X, Y, T}, where

(5) X(x, y, t) = ∂x + 2y∂t, Y (x, y, t) = ∂y − 2x∂t, T = ∂t.

Since the only nonzero commutator is [X, Y ] = −4T , the family XH = {X, Y } satisfies

the bracket generating condition at step 2, defining a Carnot-Carathéodory structure on
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R3. We call H-perimeter the X -perimeter associated with XH , and we denote it by PH .

Motivated by the study of quasiregular mappings from R3 into H1, Pansu proved in [27]

the validity of the isoperimetric inequality (2) for PH and the Lebesgue measure L3, with

ν = 4
3
. Notice that L3 and PH are homogeneous with respect to the anisotropic dilations

(6) (x, y, t) 7→ δHλ (x, y, t) = (λx, λy, λ2t), λ > 0.

In fact, for any measurable set E ⊂ R3 and for all λ > 0 we have L3(δHλ (E)) = λQL3(E)

and PH(δHλ (E)) = λQ−1PH(E), where Q = 4 is the Hausdorff dimension of H1 computed

with respect to the Carnot-Carathéodory distance. Still in [27], Pansu formulated a

conjecture about the best constant in (2): Pansu’s conjecture claims that isoperimetric

sets are obtained by rotating a Carnot-Carathéodory geodesic around the vertical axis

{(0, 0, t), t ∈ R}. The conjectured isoperimetric sets are then obtained by left-translations

and anisotropic dilations of the set

EH
isop =

{
(z, t) ∈ H1, |t| < ϕH(|z|), |z| < 1

}
,

ϕH(r) = arccos r + r
√

1− r2, r ∈ [0, 1],
(7)

where we identify a point (x, y) ∈ R2 with z = x+iy ∈ C and |z| (resp. |t|) is the standard

norm of z ∈ C (resp. t ∈ R). Notice that the set EH
isop is not a Carnot-Carathéodory ball

in H1: Monti proved indeed in [22] that metric balls in the Heisenberg group are not

isoperimetric sets. Pansu’s conjecture has been proved only assuming some regularity

(C2-regularity, convexity) or symmetry, see [6, 12, 13, 14, 23, 26, 29, 30, 31].

1.2. Grushin spaces. The isoperimetric problem in Grushin spaces is the subject of

Section 2. To define a Grushin space, let Rn = Rh × Rk, where h, k ≥ 1 are integers and

n = h+ k. Given α > 0, we define the following family of vector fields in Rn:

(8) Xα = {X1, . . . , Xh, Y1, . . . , Yk},
Xi = ∂xi , i = 1, . . . , h,

Yj = |x|α∂yj , j = 1, . . . , k,

where (x, y) ∈ Rh × Rk and |x| is the standard norm of x ∈ Rh. The family Xα defines

a Carnot-Carathéodory structure on Rn (even though for non-integers α > 0 the bracket

generating condition cannot be verified). For α > 0, we call α-perimeter the X -perimeter
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associated with the family Xα, and we denote it by Pα. Notice that Ln and Pα are

homogeneous with respect to the anisotropic dilations

(9) (x, y) 7→ δαλ (x, y) = (λx, λα+1y), λ > 0.

Namely, for any λ > 0 and any measurable set E ⊂ R2 we have Ln(δαλ (E)) = λQLn(E)

and Pα(δαλ (E)) = λQ−1, where Q = h+(α+1)k is the Hausdorff dimension of the Grushin

structure, computed with respect to the Carnot-Carathéodory distance.

We study the isoperimetric problem in Grushin spaces under a symmetry assumption

that depends on the dimension. We say that a set E ⊂ Rh×Rk is x-spherically symmetric

if there exists a set F ⊂ R+ × Rk, called generating set of E, such that

(10) E =
{

(x, y) ∈ Rn : (|x|, y) ∈ F
}
.

We denote by Sx the class of Ln-measurable, x-spherically symmetric sets. If h ≥ 2,

we consider the isoperimetric problem in the class of x-spherically symmetric sets, see

(11) below. In the sequel, by a vertical translation we mean a mapping of the form

(x, y) 7→ (x, y + y0) for some y0 ∈ Rk. One of the main results in [14] is the following.

Theorem 1.1. Let α > 0, h, k ≥ 1, and n = h+ k. The isoperimetric problem

(11) inf {Pα(E) : E ⊂ Rn Ln-measurable with 0 < Ln(E) <∞ and E ∈ Sx, if h ≥ 2}

has solutions and, up to a vertical translation and a null set, any isoperimetric set E ⊂ Rn

is of the form

(12) E = {(x, y) ∈ Rn : |y| < f(|x|)} ,

for a function f ∈ C([0, r0]) ∩ C1([0, r0)) ∩ C∞(0, r0), with 0 < r0 < ∞, satisfying

f(r0) = 0, f ′ ≤ 0 on (0, r0), and solving the following equation

(13)
f ′(r)√

r2α + f ′(r)2
=
k − 1

rh−1

∫ r

0

s2α+h−1

f(s)
√
s2α + f ′(s)2

ds− κ

h
r, for r ∈ (0, r0),

with κ = (Q−1)Pα(E)
QLn(E)

.
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Notice that, when h = 1 no symmetry assumptions are considered and we deduce

from formula (12) that isoperimetric sets are x-symmetric. Moreover, in the special case

k = 1, equation (13) can be integrated (see Remark 2.1), leading to the classification of

all isoperimetric sets as vertical translations and dilations of

Eα
isop = {(x, y) ∈ Rn : |y| < ϕα(|x|)} ,

ϕα(r) =

∫ π/2

arcsin r

sinα+1(s) ds, r ∈ [0, 1].
(14)

Formula (14) generalizes to dimensions h ≥ 2 the results of [25]. When k = 1 and α = 1,

the profile function satisfying the final condition ϕ1(1) = 0 is ϕ1(r) = 1
2

(
arccos(r) +

r
√

1− r2
)
, r ∈ [0, 1]. This is the profile function ϕH of the conjectured isoperimetric

set in the Heisenberg group, defined in (7). In fact, in Section 2.4 we show that the

isoperimetric problem (11) for α = 1 is equivalent to the isoperimetric problem in the

class of spherically symmetric sets in H-type groups, that are Carnot groups generalizing

the Heisenberg group. Hence Theorem 1.1 is a generalization of [23, Theorem 1.2].

1.3. The Riemannian Heisenberg isoperimetric problem. In Section 3 we study

the isoperimetric problem in a family of Riemannian approximations of H1. Given two

parameters ε > 0 and σ 6= 0, consider the 3-dimensional Lie algebra hε generated by the

following family of vector fields defined on R3: Xε = {Xε, Yε, Tε}, with

(15) Xε =
1

ε
(∂x + σy∂t) , Yε =

1

ε
(∂y − σx∂t) , and Tε = ε2∂t,

where (x, y) ∈ R2 is identified with z = x + iy ∈ C. We endow R3 with a metric

structure by defining a scalar product 〈·, ·〉ε on hε that makes Xε, Yε, Tε orthonormal, and

we extend it to a Riemannian metric gε = 〈·, ·〉 in R3, which is left-invariant with respect

to the operation of the underlying Lie group H1
ε. When ε = 1 and σ → 0, H1

ε converges

to the Euclidean space. When σ 6= 0 and ε → 0+, then H1
ε endowed with the distance

function induced by the rescaled metric ε−2〈·, ·〉 converges to the Heisenberg group H1.

The Riemannian volume of (H1
ε, gε) is the Lebesgue measure L3, independently of ε and σ.

The Riemannian perimeter of (H1
ε, gε) is the X -perimeter associated with the family Xε,

and we denote it by Pε. For σ 6= 0 and ε→ 0+ the rescaled functional εPε Γ-converges to
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the H-perimeter. This implies that, for σ 6= 0 and ε→ 0+, solutions to the isoperimetric

problem

(16) inf
{
Pε(E) : E ⊂ H1

ε, L3-measurable, with 0 < L3(E) <∞
}
,

converge to solutions of the Heisenberg isoperimetric problem. We study the isoperimetric

problem (16) under a topological assumption on minimizers.

Theorem 1.2. If Σ ⊂ H1
ε is an embedded topological sphere and it is the boundary of

an isoperimetric set for (16), then there exists R > 0 such that, up to left-translations,

Σ = ΣR, where

ΣR = {(z, t) ∈ H1
ε : |t| = ϕε(|z|;R), |z| < R} and, for r ∈ [0, R](17)

ϕε(r;R) = 1
2σε4

[
(ε2 + σ2R2) arctan

(
σ
ε

√
R2−r2
ε4+σ2r2

)
+ εσ

√
(R2 − r2)(ε4 + σ2r2)

]
.

When ε = 1 and σ → 0, the spheres ΣR converge to the standard spheres of the

Euclidean space. When σ 6= 0 and ε → 0+, the spheres ΣR converge to the boundary

of the Pansu’s bubble (7). We conjecture that, within its volume class and up to left

translations, the sphere ΣR is the unique solution of the isoperimetric problem in H1
ε.

2. Isoperimetrc problem in Grushin spaces

The aim of this Section is to describe the steps followed in [14] to prove Theorem 1.1.

2.1. Rearrangements for the α-perimeter. In this Section we describe how to rear-

range sets in the minimization class for the isoperimetric problem (11), in order to decrease

the α-perimeter gaining additional symmetries. This will allow us to prove existence of

isoperimetric sets and deduce their a-priori regularity.

Theorem 2.1 (Rearrangement for the α-perimeter). Let h, k ≥ 1, n = h+ k, α > 0. Let

E ⊂ Rn be Ln-measurable, and assume E ∈ Sx if h ≥ 2. Then there exists a decreasing

function f : I → [0,+∞) defined on a real interval I = [0, r0) such that the set

(18) E∗ = {(x, y) ∈ Rn : |y| < f(|x|)}
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satisfies

(19) Pα(E∗) ≤ Pα(E), Ln(E∗) = Ln(E).

Moreover, if E is isoperimetric and Pα(E∗) = Pα(E), then E = E∗.

The proof makes use of two different techniques depending on whether h = 1 or h ≥ 2.

2.1.1. The case h = 1. We use Steiner and Schwarz rearrangements, combined with a

convenient change of coordinates that we describe below and that transforms the α-

perimeter into the standard perimeter (see [25] for the planar case h = k = 1). Let

n = 1 + k and consider the mappings

Φ,Ψ : Rn → Rn, Ψ(x, y) =

(
sgn(x)

|x|α+1

α + 1
, y

)
, Φ(ξ, η) =

(
sgn(ξ)|(α + 1)ξ|

1
α+1 , η

)
.

Then we have Φ ◦ Ψ = Ψ ◦ Φ = IdRn . In [14, Proposition 2.5] we prove that, for any

measurable set E ⊂ Rn, we have

(20) Pα(E) = P (Ψ(E)),

where P denotes the standard Euclidean perimeter.

Sketch of the proof of Theorem 2.1 in the case h = 1. By (20) the set F = Ψ(E) ⊂ Rn

satisfies P (F ) = Pα(E). Moreover, the measure µ on Rn defined by

µ(F ) =

∫
F

|(α + 1)ξ|−
α
α+1 dξdη

satisfies µ(F ) = Ln(E). First, we rearrange the set F using Steiner symmetrization in

direction ξ. Namely, we let F1 = {(ξ, η) ∈ Rn : |ξ| < L1(F η)/2}, where F η = {ξ ∈

R : (ξ, η) ∈ F}. We have P (F1) ≤ P (F ) and the equality P (F1) = P (F ) implies that

a.e. section F η is equivalent to an interval. Moreover, it can be proved that µ(F1) ≥ µ(F )

and µ(F1) = µ(F ) implies that a.e. section F η is a symmetric interval centered at 0.

Then, we let F2 be the Schwarz symmetrization of F1 in Rk, obtaining P (F2) ≤ P (F1).

Equality implies that a.e. section F ξ
1 = {η ∈ Rk : (ξ, η) ∈ F 1} is an Euclidean ball.

Moreover µ(F2) = µ(F1). In conclusion, the set E∗ = δαλ (Φ(F2)) with λ > 0 such that

Ln(E∗) = Ln(E), (δαλ defined in (9)) satisfies (19).



110 VALENTINA FRANCESCHI

For the second part of the statement, notice that from the equality Pα(E∗) = Pα(E)

and the characterization of the equality cases that we recorded above, we deduce that

existence of two functions f : [0,∞)→ [0,∞] and c : [0,∞)→ Rk such that

E = {(x, y) ∈ Rn : |y − c(|x|)| < f(|x|)}.

In the case that E is isoperimetric, it can be also deduced that c is a constant function,

concluding the proof (see [14, Proposition 5.4]). �

2.1.2. The case h ≥ 2. We describe how to prove Theorem 2.1 in the case when h ≥ 2

and E ⊂ Rn is already x-spherically symmetric. The reasoning starts from the validity

of the reduction formula (21) below, that allows us to use a rearrangement introduced in

[24] to obtain formula (18) for isoperimetric sets.

Proposition 2.1 (Reduction formula for the α-perimeter of x-spherically symmetric sets).

Let E ⊂ Rn be a bounded open set with finite α-perimeter that is x-spherically symmetric

with generating set F ⊂ R+ × Rk. Then we have:

(21) Pα(E) = hωh sup
ψ∈F1+k(R+×Rk)

∫
F

(
∂r
(
rh−1ψ1

)
+ rh−1+α

k∑
j=1

∂yjψ1+j

)
drdy,

where ωh = Lh({x ∈ Rh : |x| < 1}), and

F1+k(R+ × Rk) =

{
ψ ∈ C1

c (R+ × Rk;R1+k) : max
(x,y)∈R+×Rk

|ψ(x, y)| ≤ 1

}
.

With this tool in hand, we are ready to complete the proof of Theorem 2.1.

Sketch of the proof of Theorem 2.1 in the case h ≥ 2. Let F ⊂ R+×R be the generating

set of E. Then Pα(E) = hωhQ(F ), where Q is the perimeter functional defined by (21).

In [14, Theorem 3.2] we refine [24, Theorem 1.5] to define a set

F ] =
{

(r, y) ∈ R+ × Rk : 0 < r < g(y)
}
,

for a suitable function g such that Q(F ]) ≤ Q(F ) and V (F ]) ≥ V (F ), with equality

V (F ]) = V (F ) holding if and only if F ] = F (up to a negligible set), where V

V (F ) = ωh

∫
F

rh−1drdy = Ln(E).
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We then consider the set generated by F ] in Rn, E]
1 =

{
(x, y) ∈ Rn : (|x|, y) ∈ F ]

}
, and

define E] = δαλ (E]
1) where λ > 0 is chosen to get Ln(E]) = Ln(E). Then the statements

of theorem follow by applying a Schwarz rearrangement in the variable y ∈ Rk to E]. �

2.2. Existence of isoperimetric sets. As a consequence of [17], the isoperimetric in-

equality (2) is valid for ν = Q
Q−1

, where Q = h+(α+1)k is the homogeneous dimension of

the Grushin space. By the homogeneity properties of Lebesgue measure and α-perimeter,

we can thus define the best constant

(22) CI = inf{P (E) : Ln(E) = 1 and E ∈ Sx, if h ≥ 2} > 0.

To prove existence of isoperimetric sets we are then reduced to prove existence of mini-

mizers to (22).

Theorem 2.2. Let h, k ≥ 1 and n = h + k. There exists E ⊂ Rn realizing the infimum

in (22) such that E = {(x, y) ∈ Rn : |y| < f(|x|)} for a decreasing function f : I → [0,∞]

defined on a bounded interval I ⊂ R.

The theorem is proved by the direct method of the Calculus of Variations, using the

lower semi-continuity of the α-perimeter and the compactness Theorem for sets of finite

X -perimeter, see [16]. In the setting of Carnot groups, existence of isoperimetric sets has

been proved by Leonardi and Rigot in [19], exploiting the invariance under left translations

of the X -perimeter. Their argument cannot be applied to Grushin spaces, due to the lack

of invariance under translations of Pα (Grushin spaces are not Carnot groups, see [11,

Remark 1.1.12] and references therein) and we introduce a suitably adapted concentration-

compactness type argument. The idea is to take a minimizing sequence {Em}m∈N for (22),

assumed to satisfy (18) by Theorem 2.1, and perform on it the following type of “cuts”

E ′m = {(x, y) ∈ Em : |x| < x0} or E ′′m = {(x, y) ∈ Em : |y| < y0}. Together with a suitable

choice of dilations, this will give us a bounded sequence {Ẽm}m∈N with Pα(Ẽm) ≤ Pα(Em)

to which we apply the direct method.
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2.3. Profile of isoperimetric sets. By Theorem 2.2 and 2.1, isoperimetric sets exist

and can be always written in the form (18), i.e.,

(23) E = {(x, y) ∈ Rn : |y| < f(|x|)},

for a decreasing function f . The monotonicity of the profile function f : [0, r0] → [0,∞)

is enough to deduce first its Lipschitz continuity, and then its smoothness. In particular,

∂E is rectifiable and P (E) can be computed using the following representation formula

(24).

Proposition 2.2 (Representation formula for Pα). Let E ⊂ Rn be a bounded open set

with rectifiable boundary. For any α > 0, define the α-normal to ∂E to be the mapping

NE
α : ∂E → Rn, NE

α = (NE
x , |x|αNE

y ), where the Euclidean outer unit normal NE : ∂E →

Rn has been split as NE = (NE
x , N

E
y ) with NE

x ∈ Rh and NE
y ∈ Rk. Then the α-perimeter

of E in Rn is

(24) Pα(E) =

∫
∂E

|NE
α (x, y)| dHn−1,

where Hn−1 denotes the standard (n− 1)-dimensional Hausdorff measure in Rn.

Thanks to (24), we can then perform a first-variation argument on the isoperimetric

set E = {(x, y) ∈ Rn : |y| < f(|x|)}: for any ε > 0 and ψ ∈ C∞c (0, r0), let Eε = {(x, y) ∈

Rn : |y| < f(|x|) + εψ(|x|)}. Then, by minimality of E and homogeneity of Pα and Ln,

we have
d

dε

(
Pα(Eε)

Q

Ln(Eε)Q−1

)∣∣∣∣
ε=0

= 0.

This leads to the differential equation (13) for f ∈ C∞(0, r0):

f ′(r)√
r2α + f ′(r)2

=
k − 1

rh−1

∫ r

0

s2α+h−1

f(s)
√
s2α + f ′(s)2

ds− κ

h
r, for r ∈ (0, r0),

with κ = (Q−1)Pα(E)
QLn(E)

.

Remark 2.1 (Computation of the solution when k = 1). When k = 1, equation (13)

reads
f ′√

r2α + f ′2
= −κ

h
r,



THE ISOPERIMETRIC PROBLEM IN CARNOT-CARATHÉODORY SPACES 113

and this is equivalent to

(25) f ′(r) = − κrα+1√
h2 − C2

hkαr
2
, r ∈ [0, r0).

Without loss of generality we assume r0 = 1. Integrating (25) with f(1) = 0 we obtain

the solution

f(r) =

∫ 1

r

sα+1

√
1− s2

ds =

∫ π/2

arcsin r

sinα+1(s) ds.

This is the profile function for the isoperimetric set when k = 1 in (14).

We also obtain the following initial and final conditions for the profile function of

isoperimetric sets. Conditions (26) imply that the profile function touches the y-axis with

infinite derivative, while (27) gives an asymptotic behavior of f around 0 that in turn

implies global C1-smoothness of ∂E and concavity of f around r = 0, see [11, Section

2.6.1].

Proposition 2.3. Let E = {(x, y) ∈ Rn : |y| < f(|x|)} be an isoperimetric set, with

f ∈ C∞(0, r0) for 0 < r0 <∞ and f decreasing. Then

(26) f(r0) = 0, lim
r→r−0

f ′(r) = −∞

and

(27) lim
r→0+

f ′(r)

rα+1
= −Chkα

h
.

2.4. Relations with the Heisenberg isoperimetric problem. Still in [14] we consider

a class of Carnot groups that generalizes the Heisenberg group H1, called H-type groups.

An H-type Lie algebra is a stratified nilpotent real Lie algebra h = h1 ⊕ h2 of dimension

n ≥ 3 and step 2 (so that h2 = [h1, h1]), satisfying some properties that in particular imply

h1 to be even dimensional (for a precise description see [4, Ch. 18]). We can thus identify

the underlying Lie group with Rh × Rk, where h = dim(h1) ≥ 2 and k = dim(h2) ≥ 1.

As an example, the N -dimensional Heisenberg group is the only H-type group for the

parameters h = 2N and k = 1. The perimeter on an H-type group (still denoted PH) can

be defined as the X -perimeter associated with an orthonormal basis of h1.

Using the representation formula (24) and the analogous one for the H-perimeter in

H-type groups (see [14, Proposition 2.1]), the following statement can be proved:
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Proposition 2.4. Let h ≥ 2, k ≥ 1 be the dimensions of the two layers of an H-type

group. Let n = h+ k and denote points as (x, y) ∈ Rh × Rk. Then, for any x-spherically

symmetric set E ∈ Sx there holds PH(E) = Pα(E) with α = 1.

Thanks to Proposition 2.4, the study of the isoperimetric problem in H-type groups

in the class of x-spherically symmetric sets is included in the study of the isoperimetric

problem (11). In particular, Remark 2.1 can be thought of as a generalization of [23].

3. Isoperimetric problem in the Riemannian Heisenberg group

In this Section we first describe the spheres ΣR introduced in Theorem 1.2, and then

present the main steps to prove it.

3.1. The spheres ΣR. For ε > 0 and σ 6= 0, we consider R3 with the Riemannian metric

gε defined in Section 1.3, left invariant with respect to the translations of the Lie group

H1
ε. We denote points in H1

ε by (z, t) ∈ C×R. Given R > 0, the sphere ΣR defined in (17)

can be obtained as the boundary of the unique symmetric minimizer for the Riemannian

perimeter Pε under volume constraint, and such that ΣR ∩ {t = 0} = {|z| = R}. We

resume it in the next proposition. Formula (28) has been first computed by Tomter [33].

Proposition 3.1. For any R > 0 there exists a unique compact smooth embedded surface

ΣR ⊂ H1 that is area stationary under volume constraint and such that

ΣR = {(z, t) ∈ H1 : |t| = f(|z|;R)}

for a function f(·;R) ∈ C∞([0, R)) continuous at r = R with f(R) = 0. Namely, for any

0 ≤ r ≤ R the function is given by

(28) ϕε(r;R) =
1

2σε4

[
(ε2 + σ2R2) arctan

(σ
ε

√
R2 − r2

ε4 + σ2r2

)
+ εσ

√
(R2 − r2)(ε4 + σ2r2)

]
.

If Σ is the boundary of an isoperimetric set in H1
ε, then it has constant mean curvature

(CMC) with respect to gε. Computing the second fundamental form of ΣR with respect to

a suitable frame, it can be shown that the sphere ΣR has indeed constant mean curvature

H =
1

εR
.
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In the following we present two nice properties of the spheres ΣR that underline their

relation both with the Euclidean isoperimetric problem and with Pansu’s conjecture.

3.1.1. Limits of ΣR. The function ϕε(·;R) = ϕε(·;R;σ) depends also on the parameter

σ, that we omitted from our notation. With ε = 1, we find

lim
σ→0

ϕ1(r;R;σ) =
√
R2 − r2.

Namely, when σ → 0, the spheres ΣR converge to Euclidean spheres with radius R > 0

in the three-dimensional space. Moreover

lim
ε→0

ϕε(r;R;σ) =
σ

2

[
R2 arccos

( r
R

)
+ r
√
R2 − r2

]
,

which gives the profile function of the Pansu’s bubble (7), with R = 1 and σ = 2.

3.1.2. Foliation by geodesics. Recall that the Pansu’s bubble is defined as the set obtained

by rotating a sR geodesic around the t-axis. We present how to recover this property in

the Riemannian approximation H1
ε. First of all the following foliation property is needed.

Proposition 3.2. For any nonzero (z, t) ∈ H1 there exists a unique R > 0 such that

(z, t) ∈ ΣR.

We are then allowed to define a vector field N on H1 \ {0} such that N (z, t) is the

exterior unit normal to ΣR at (z, t). The vector field

(29) M(z, t) = sgn(t)
∇NN
|∇NN|

is well-defined and smooth outside the center of H1
ε. The next theorem shows that the

integral lines of M are Riemannian geodesics of ΣR.

Theorem 3.1. Let ΣR ⊂ H1
ε be the CMC sphere with mean curvature H > 0. Then the

integral curves of M are Riemannian geodesics of ΣR joining the north pole N to the

south pole S.

Remark 3.1 (Limits of the foliation of Theorem 3.1). If ε = 1 and σ → 0, M tends

to the vector field tangent to the meridians of the round sphere. On the other hand, for
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σ 6= 0, ε→ 0+, let M̄ = limε→0 εM. Then, denoting by J the complex structure, we have

∇M̄M̄ =
2

R
J(M̄),

which is the equation for geodesics in H1 for the Carnot-Carathéodory distance dXH .

Hence, the foliation by geodesics of the Pansu’s sphere can be recovered in the Riemannian

approximation H1
ε by the integral lines of M.

3.2. Proof of Theorem 1.2: a characterization of CMC topological spheres.

Theorem 1.2 is a corollary of the next Theorem, see [13, Theorem 5.9].

Theorem 3.2. If Σ ⊂ H1
ε is an embedded topological sphere with CMC, then, up to

left-translations, we have Σ = ΣR, for some R > 0.

In 3-dimensional homogeneous manifolds with 4-dimensional isometry group there is a

theory of the so-called holomorphic quadratic differentials, see [1], [2], and [10]. One of the

main outcomes of this theory is a result announced in [2]: CMC spheres have rotational

symmetry. The ideas are based on the Hopf’s proof of the following theorem, see [18].

Theorem 3.3 (Hopf, 1955). Let Σ ⊂ R3 be a closed surface of genus 0 with CMC with

respect to the Euclidean metric. Then Σ is a Euclidean sphere.

Proof of Theorem 3.3. The proof is divided into three main steps.

Step 1. First of all a differential characterization of Euclidean spheres is provided. Namely,

Σ is a Euclidean sphere, if and only if h0 ≡ 0, where h0 is the traceless part of the second

fundamental form

h =

L M

M N

 .

Namely,

h0 =

L−N
2

M

M −L−N
2

 .

In fact, the complex function h̃0 =
L−N

2
− iM satisfies 2|h̃0| = |k1 − k2|, where k1, k2

are the principal curvatures.
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Step 2. Assume Σ = F (D), for an open set D ⊂ C, and a smooth function F : D → R3

that constitutes a (local) conformal parametrization of Σ. Then we write the second

fundamental form of Σ as a function of the complex variable z ∈ C, h = h(z), z =

x+ iy ∈ D ⊂ C. Codazzi equations for the derivatives of the mean curvature of Σ (which

vanishes by assumption) and its second fundamental form, imply:

∂x

(
L−N

2

)
(z) + ∂yM(z) = 0(30)

∂y

(
L−N

2

)
(z)− ∂xM(z) = 0(31)

Notice that (30) and (31) are the Cauchy-Riemann (CR) equations for h̃0, and imply its

analiticity. This is the reason of the name “holomorphic quadratic differential”, which is

referred to the traceless part of the second fundamental form h0.

Step 3. Since Σ is a topological sphere we can use two conformal parametrizations of

Σ without the north pole and the south pole respectively. In this case, the analyticity

ensured by Step 2, together with Liouville’s theorem implies h0 ≡ 0. By Step 1, this is

equivalent to say that Σ is a Euclidean sphere. �

3.2.1. Holomorphic quaratic differential for H1
ε. We present a proof of Theorem 3.2 that

follow by the definition of a suitable holomorphic quadratic differential in H1
ε, see formula

(32). We start by noticing that in H1
ε there are two main differences with respect to

Hopf’s proof in the Euclidean case:

• ΣR are not umbilical, i.e., there exist p ∈ ΣR such that k1(p) 6= k2(p).

• Codazzi equations are more complicated and don’t imply analyticity of h0.

These two ingredients allow us to define the right object playing the role of h0 in the proof

of Hopf’s Theorem 3.3.

Sketch of the proof of Theorem 3.2. We divide the proof in three steps.

Step 1. We characterize the spheres ΣR as the only surfaces having CMC H = 1/εR, and

such that k0 ≡ 0 where k is a quadratic form defined as a perturbation of the second

fundamental form h. In particular,

(32) k = h+ b, b =
2σ2

ε4
√
ε8H2 + σ2

qH ◦ (θ ⊗ θ) ◦ q−1
H ,
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where θ is the contact form

θ(V ) = 〈V, Tε〉 for any V ∈ Γ(TH1
ε),

and qH is a rotation on every tangent plane of a given angle depending on H. This is the

holomorphic quadratic differential of H1
ε. Formula (32) coincides, up to the sign, with the

formula computed in [10] (page 5).

Step 2. Given a CMC surface Σ, we deduce analyticity of k0 from the Codazzi equations

written in this context. Indeed, as in the Euclidean case, they imply Cauchy-Riemann

equations for k0.

Step 3. With the same reasoning of the Euclidean case, we conclude that k0 vanishes

identically on Σ thanks to the assumption that Σ is a topological sphere. By Step 1, this

is equivalent to say that Σ = ΣR for some R > 0.
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and the existence of minimal surfaces. Comm. Pure Appl. Math. 49 (1996), 1081–1144.

[18] H. Hopf. Differential geometry in the large. Notes taken by Peter Lax and John W. Gray. Lecture

Notes in Mathematics, 1000. Springer-Verlag, Berlin, 1989.

[19] G. P. Leonardi, S. Rigot. Isoperimetric sets on Carnot groups. Houston J. Math. 29 (2003), no. 3,

609–637.

[20] A. Hurwitz. Sur quelques applications gomtriques des sries de Fourier. Ann. Sci. École
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[29] M. Ritoré. A proof by calibration of an isoperimetric inequality in the Heisenberg group Hn.

Calc. Var. Partial Differential Equations, 44 (2012), no. 1-2, 47–60.
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E-mail address: valentina.franceschi@inria.fr


