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Abstract. This paper deals with existence and multiplicity of positive solutions for a

quasilinear problem with Neumann boundary conditions. The problem is set in a ball

and admits at least one constant non-zero solution; moreover, it involves a nonlinearity

that can be supercritical in the sense of Sobolev embeddings. The main tools used are

variational techniques and the shooting method for ODE’s. These results are contained

in [6, 3].

Sunto. In questo lavoro trattiamo l’esistenza e la molteplicità di soluzioni positive per un

probelma quasilineare ambientato in una palla, con condizioni al bordo di Neumann. Il

problema ammette almeno una soluzione costante non nulla e coinvolge una nonlinearità

che può essere supercritica nel senso delle immersioni di Sobolev. I principali strumenti

usati nello studio di tale problema sono tecniche variazionali e il metodo di shooting per

le EDO. Questi risultati sono contenuti in [6, 3].
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1. Introduction

For 1 < p <∞, we consider the following quasilinear Neumann problem

(1)


−∆pu+ up−1 = uq−1 in BR,

u > 0 in BR,

∂νu = 0 on ∂BR,

where ∆pu := div(|∇u|p−2∇u) denotes the p-Laplace operator, BR ⊂ RN is the ball of

radius R centered at the origin, N ≥ 1, and ν is the outer unit normal of ∂BR. The

nonlinearity uq−1 is supposed to be (p − 1)-superlinear at infinity (i.e., q > p), but no

conditions of subcriticality in the sense of Sobolev embeddings are required.

We point out that, regardless of the choice of q > p, even for q greater than the Sobolev

critical exponent p∗, problem (1) admits the non-zero solution u ≡ 1. Hence, differently

from Dirichlet supercritical problems, with Neumann boundary conditions there is not a

Pohozaev-type obstruction to the existence of non-zero solutions. The natural question

that arises in this setting is whether the problem admits any non-constant solutions.

Concerning existence, multiplicity, and oscillatory behavior (around the constant solu-

tion) of non-constant radial solutions of (1), we prove in [3] that the situation changes

drastically depending on p > 1. More precisely, if p > 2 the problem has infinitely many

solutions as soon as q > p. While, if p = 2, the problem admits at least k non-constant

solutions provided that q − 2 is bigger than the (k + 1)-th radial eigenvalue of the Neu-

mann Laplacian1. Finally, for 1 < p < 2 a surprising behavior appears, as non-constant

solutions with the same oscillatory behavior come in couples as soon as the radius of the

domain overcomes a certain threshold. The result obtained reads as follows.

Theorem 1.1 (Corollary 1.5 of [3]). Let q > p and λrad
k denote the k-th radial eigenvalue

of the Neumann Laplacian.

1For radial eigenvalues of the Neumann Laplacian we mean the eigenvalues of −∆u = λu in BR with

∂νu = 0 on ∂BR, correspondinding to radial eigenfunctions. They are numbered starting from the zero

eigenvalue: 0 = λrad1 < λrad2 < λrad3 < . . . .
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(i) If p = 2 and q − 2 > λrad
k+1 for some k ≥ 1, then (1) admits at least k different

non-constant radial solutions u1, . . . , uk. Furthermore, uj − 1 has exactly j zeros

for any j = 1, . . . , k.

(ii) If p > 2, then (1) admits infinitely many non-constant radial solutions.

(iii) If 1 < p < 2, then for every integer k ≥ 1 there exist R∗(k) > 0 such that if

R > R∗(k), problem (1) admits at least 2k different non-constant radial solutions

u±1 , . . . , u
±
k . Furthermore, u±j − 1 has exactly j zeros for any j = 1, . . . , k.

In [6, 3], we study p-Laplacian problems involving nonlinearities g(u) possibly more

general than the pure power uq−1, namely

(2)


−∆pu+ up−1 = g(u) in BR,

u > 0 in BR,

∂νu = 0 on ∂BR.

The main feature, in all the cases, is that we allow g to have Sobolev-supercritical growth.

This note is organized as follows. In Section 2, we show a variational approach to get a

minimax solution of (2) when p ≥ 2. In Section 3 we collect some comments, pre-existing

results, and numerical simulations to get further insights into the features of the solutions

of (2) when p = 2 and p > 2. Finally, in Section 4 we consider the general case p > 1 and

obtain existence, multiplicity, and oscillatory behavior via shooting method.

2. A minimax solution for p ≥ 2

In [6], we study the existence of non-constant solutions of problem (2) with p ≥ 2. We

assume that g : [0,∞)→ R satisfies the following hypotheses 2

2In [6], the hypothesis (g0) requires the limit in 0 to belong to [0, 1) instead of (−∞, 1). Nevertheless,

that assumption can be weakened as stated here, because it is always possible to modify g(s) into

g̃(s) := g(s) +msp−1 for a suitable m > 0 such that lims→0+ g̃(s)/sp−1 ∈ [0, 1), and study the equivalent

problem −∆pu + (m + 1)up−1 = g̃(u). We observe in passing that the constant m can be also adjusted

in such a way to deal with a non-negative and non-decreasing g̃.
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(greg) g is of class C1([0,∞));

(g0) lims→0+
g(s)
sp−1 ∈ (−∞, 1);

(g∞) lim infs→∞
g(s)
sp−1 ∈ (1,∞];

(gu0) ∃ u0 > 0 such that g(u0) = up−1
0 and

g′(u0) >

(p− 1)up−2
0 if p > 2,

λrad
2 + 1 if p = 2,

where λrad
2 denotes the second radial

eigenvalue of Neumann Laplacian −∆. u0
(1) u0

(2)

s p-1
g(s)

In particular, the pure power sq−1 for q > p satisfies (greg)–(gu0).

As an immediate consequence of (g0), g(0) = 0. Moreover, by (g∞), the nonlinearity g

can be taken Sobolev-supercritical. We further remark that, by the regularity of g and by

(g0) and (g∞), we immediately have the existence of an intersection point u0 > 0 between

g and the power function sp−1, with g′(u0) ≥ (sp−1)′(u0) = (p − 1)up−2
0 . Hence, when

p > 2, condition (gu0) is only needed to prevent the situation in which g is tangent to sp−1

at u0. While for p = 2, the condition required at u0 is stronger, being λrad
2 > 0. In both

cases, p > 2 and p = 2, conditions (g0) and (g∞) are enough to prove the existence of a

radial solution to (2) of minimax-type, while (gu0) is needed to prove that the solution

found is non-constant. We finally observe that, due to the existence of u0 > 0 for which

g(u0) = up−1
0 , problem (2) admits at least the constant solution u ≡ u0.

The main result in [6] reads as follows.

Theorem 2.1 ([2, Theorem 1.3] for p = 2, [6, Theorem 1.1] for p > 2). Let p ≥ 2 and let

g satisfy (greg)–(gu0). There exists a non-constant, radial, radially non-decreasing solution

of (2). In addition, if u0,1, . . . , u0,n are n different positive constants satisfying (gu0), then

(2) admits n different non-constant, radial, radially non-decreasing solutions.

We sketch below the proof of Theorem 2.1, see also [5]. We first observe that, since the

equation in (2) is possibly supercritical, the energy associated to the problem might not

be well-defined in the whole of W 1,p(BR). This prevents, a priori, the use of variational

methods. Nevertheless, we take advantage of the idea in [12] and work in the cone of
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non-negative, radial, radially non-decreasing functions

(3) C :=
{
u ∈ W 1,p

rad(BR) : u ≥ 0, u(r) ≤ u(s) for all 0 < r ≤ s ≤ R
}
,

where with abuse of notation we write u(|x|) := u(x).

• Sketch of the proof of Theorem 2.1. We split the proof into five steps.

Step 1. (A priori estimates) The main reason for working in C is that

All functions in C are bounded.

Hence, in C, the associated energy functional IC : C → R is well-defined. By the way,

the cone C has empty interior in the W 1,p-topology. So, if a function u is such that

I ′C(u)[ϕ] = 0 for all ϕ ∈ C,

we cannot conclude in general that u is a weak solution of (2). The strategy used in [2, 6]

to overcome this difficulty is based on a priori estimates in C, namely:

All solutions of (2) belonging to C are a priori bounded in W 1,p(BR) and in L∞(BR).

Step 2. (Truncation) Thanks to the a priori estimates, we can truncate the nonlinearity

g and redefine it at infinity, in order to deal with a subcritical nonlinearity. In this way, we

end up with a new truncated problem with the property that all solutions of the truncated

problem belonging to C solve also the original problem (2).

Step 3. (Existence) Due to the subcriticality of the truncated g, the energy functional

I associated to the truncated problem is well-defined in the whole of W 1,p(BR). Hence,

we can now apply variational methods. By Step 2., we need to find a critical point of

I which belongs to C. To this aim, we prove that a mountain pass-type theorem holds

for I inside the cone C. The main difficulty here is the construction of a descending flow

that preserves C, cf. [6, Lemmas 3.7–3.8]. When p > 2, this step presents the additional

technical difficulty of proving the existence of a local Lipschitz vector field that preserves

the cone C, see [6, Lemmas 3.4–3.6].

Step 4. (Non-constancy) We want to prove that the solution found is nonconstant. To

this aim, we further restrict our cone and work in a subset of C in which the only constant

solution of (2) is u ≡ u0. In this set, we build an admissible curve γ along which the energy

is lower than the energy of the constant u0. This gives immediately that the minimax
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solution found (whose energy is such that I(u) = minγ∈Γ maxt∈[0,1] I(γ(t)), where Γ is the

set of admissible curves) is not identically equal to u0. More precisely, let φ2 be the second

eigenfunction of the Neumann p-Laplacian. Via second-order Taylor expansion of I, we

prove that for every s ∈ (−ε, ε) \ {0}

I(t(s)(u0 + sφ2))− I(u0) =
s2

2

∫
BR

{
((((((((
|∇u0|p−2|∇φ2|2 + [(p− 1)up−2

0 − g′(u0)]φ2
2

}
dx+ o(s2) < 0 (p > 2),

s2

2

∫
BR

{
|∇φ2|2 + [1− g′(u0)]φ2

2

}
dx+ o(s2) < 0 (p = 2),

where t(s) is a suitable continuous function. We stress that the inequality signs in the

above computation, both for p > 2 and for p = 2, are due to condition (gu0). This makes

apparent the reason why we need to require different conditions for p > 2 and p = 2.

Now, to get the curve γ ∈ Γ along which the energy is lower than I(u0), it is enough

to rescale suitably the curve s 7→ t(s)(u0 + sφ2). Finally, we observe here that this part

of the proof uses heavily the C2-regularity of the energy functional I, thus it cannot be

generalized to the case 1 < p < 2.

Step 5. (Multiplicity) If there is more than one constant u0 satisfying condition (gu0),

we take advantage of the fact that, since we work in the restricted cone containing exactly

one constant solution, we automatically localize each minimax solution. This allows us

to prove the multiplicity result stated in Theorem 2.1, by simply repeating the same

argument in each cone restricted about each u0,i.

3. Some comments on the case p ≥ 2

From Step 4. above, one could get the impression that condition (gu0) is only a technical

ad hoc assumption imposed on g in order to let the machinery of the proof work fine.

Actually, with reference to the bifurcation diagrams in Figures 1 and 2, one can see that

the values q = p for p > 2 and q = 2 + λrad
2 for p = 2, involved in condition (gu0) when

g(s) = sq−1, arise naturally from the problem. Despite this, one should be aware that it

has been proved in [1] that, for p = 2 and N ≥ 3, the value 2 + λrad
2 is not sharp.
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Let us first comment the case p = 2. We notice that, in the semilinear case, condition

(gu0) involves the second radial eigenvalue of −∆ with Neumann boundary conditions.

This is coherent with the result in [1], where the authors show that a bifurcation phe-

nomenon underlies the existence result, at least in the case of the prototype nonlinearity

g(s) = sq−1. They prove that at q = 2 +λrad
k+1, k ≥ 1, a new branch of solutions bifurcates

from the constant branch u ≡ u0 = 1.

Theorem 3.1 ([1]). Let p = 2, g(s) = sq−1 with q > 2, and λrad
k denote the k-th eigenvalue

for the Neumann Laplacian for any integer k ≥ 1.

(i) If q > 2 + λrad
k+1, there exist at least k non-constant radial solutions u1, . . . , uk

of (2). Furthermore, uj − 1 has exactly j zeros for any j = 1, . . . , k.

(ii) If 2∗ > q > 2 + λrad
k+1 (where 2∗ is the Sobolev critical exponent), there exist at

least 2k non-constant radial solutions u±1 , . . . , u
±
k of (2). Furthermore, u±j − 1 has

exactly j zeros for any j = 1, . . . , k.

This theorem was proved by means of the Crandall-Rabinowitz bifurcation technique

in the parameter q. Moreover, part (i) of the previous theorem was also recovered in [3,

Corollary 1.5-(ii)] via shooting method.

We present now some numerical simulations performed with the software AUTO-07p

for problem (2) in dimension N = 1, with R = 1 and g(s) = sq−1.

In Figure 1, we represent the first three bifurcation branches for this problem with

p = 2. The black line represents the constant solution u ≡ 1; the branches bifurcate at

points q = 2 + λrad
k , k = 2, 3, 4. The solutions belonging to the lower part of the first

branch are monotone increasing, the ones belonging to the upper part of the first branch

are monotone decreasing, in both cases they all intersect once the constant solution u ≡ 1.

Solutions of the lower part of the second branch present exactly one interior maximum

point, solutions of the upper part of the second branch have exactly one interior minimum

point, in both cases they have two intersections with u ≡ 1, and so on.

In [2], it was conjectured that a similar behavior should hold also for a general nonlin-

earity g, when p = 2. For g asymptotically linear (and hence Sobolev-subcritical), this

conjecture was proved to be true in [8]. In [3, Corollary 1.3] (see Theorem 4.1-(i) below),
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Figure 1. The first three bifurcation branches for problem (2) in the case

N = 1, R = 1, p = 2, g(s) = sq−1. On the left: bifurcation diagram u(0) as a

function of q. On the right: solutions belonging to the first three branches. The

color of each solution in the right plot corresponds to the color of the branch it

belongs to in the left plot. More precisely, the numbers along the branches in

the left plot are located in correspondence with the initial condition u(0) of the

solution represented in the right plot.

we prove the conjecture, without assuming any growth conditions at infinity on g, via

shooting method.

Concerning the case p > 2, from Theorem 2.1 we know that a non-constant solution

of (2) arises as soon as the exponent q > p. Even more, Theorem 1.1-(ii) guarantees that

when g(s) = sq−1, (2) has infinitely many solutions for q > p. Here the eigenvalues of the

operator are not involved. In Figure 2, we present some numerical simulations for the case

p = 2.1 > 2. A bifurcation phenomenon from the constant solution seems to persists also

when p > 2. In this figure only the two branches of monotone solutions are detected, we

refer to [3, Section 3] for more simulations with p > 2. In [3], we conjecture that in this

case infinite branches bifurcate from the same point q = p, giving rise to a very degenerate

situation. This would be coherent with the result of Theorem 1.1-(ii). We further remark

that the solution found in Theorem 2.1 is non-decreasing, so with reference to Figure 2,

it belongs to the lower (blue) branch of solutions.



RADIAL p-LAPLACIAN SUPERCRITICAL NEUMANN PROBLEMS 63

Figure 2. Partial bifurcation diagram for problem (2) in the case N = 1,

R = 1, p = 2.1, and g(s) = sq−1. On the left: bifurcation diagram u(0) as

a function of q: the first two branches of solutions bifurcating at q = p > 2.

The green branch is the one of decreasing solutions, the blue branch is the one of

increasing solutions. On the right: solutions belonging to the first branches. Blue

(increasing) solutions belong to the blue branch in the left plot, green (decreasing)

solutions belong to the green branch.

4. Existence and multiplicity via shooting method for p > 1

In [3], we consider problem (2) for every p > 1. We require slightly different (essentially

weaker) conditions on g, with respect to the ones introduced in Section 2. Namely,

(greg)′ g ∈ C([0,∞) ∩ C1((0,∞));

(g0)′ lims→0+
g(s)
sp−1 ∈ (−∞, 1];

(geq) g(s)− sp−1


< 0 if 0 < s < 1

= 0 if s = 1

> 0 if s > 1;

(g1) there exists C1 ∈ [0,∞] such that lims→1
g(s)−sp−1

|s−1|p−2(s−1)
= C1.

We note that (geq) means that g intersects only once the power sp−1 at a point u0, which

without loss of generality is taken equal to 1. Furthermore, we observe that while the

assumption in zero (i.e., (g0)′) is just slightly more general than before (i.e., (g0)), we have
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replaced (gu0) with (g1). Condition (g1) is implied by the regularity of g when 1 < p ≤ 2.

Indeed, since g is of class C1 at 1, hypothesis (g1) holds automatically with C1 ∈ [0,∞)

for p = 2, and with C1 = 0 for p < 2. The only case in which the existence of the limit in

(g1) is not implied by the regularity of g (and so (g1) is really an additional assumption)

is when p > 2 and g′(1) = 0. We further observe that for p > 2, condition (gu0) required

in [6] is stronger than (g1), since (gu0) (for u0 = 1) implies (g1) with C1 =∞.

With this set of hypotheses, the prototype nonlinearity can be taken also of the form

g(s) = sq−1 + sp−1 − sr−1 with p ≤ r < q,

so that the model equation becomes a little more general than the one in (1), namely

−∆pu+ ur−1 = uq−1 in BR.

Concerning the shape of the domain, we point out that the main feature needed here is

the radial symmetry. In [3] it is also treated the case set in an annular domain. Since the

arguments are similar to the ones for the ball, for the sake of simplicity we present here

only the case of the ball. The main result in [3] is the following.

Theorem 4.1 (Theorems 1.2 and 1.4 of [3]). Let p > 1 and λrad
k denote the k-th radial

eigenvalue of −∆p with Neumann boundary conditions for any integer k ≥ 1. If g satisfies

(greg)′–(g1), then the following implications hold.

(i) If C1 > λrad
k+1, then (2) admits at least k different non-constant radial solutions

u1, . . . , uk. Furthermore, uj − 1 has exactly j zeros for any j = 1, . . . , k.

(ii) If C1 =∞, then problem (2) admits infinitely many non-constant radial solutions.

(iii) If C1 = 0, then3 for every integer k ≥ 1 there exists R∗(k) > 0 such that if R >

R∗(k), (2) admits at least 2k different non-constant radial solutions u±1 , . . . , u
±
k .

Furthermore, u±j − 1 has exactly j zeros for any j = 1, . . . , k.

3When the domain is an annulus A(R1, R2), part (iii) of Theorem 4.1 reads as

If C1 = 0, then for every integer k ≥ 1 and any ε > 0 there exists R∗(k, ε) > 0 such that if R1 < εR2

and R2 > R∗(k, ε), (2) admits at least 2k different non-constant radial solutions u±1 , . . . , u
±
k .

The oscillating behavior is the same as for the solutions in the ball.
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We observe that in part (i), condition C1 > λrad
k+1 can be also read in terms of the radius

R of the ball. Since the eigenvalues λrad
k = λrad

k (R) are decreasing in R, keeping C1 fixed

(i.e., g fixed), we can increase the radius R in order to have the condition satisfied. In

this way, the assumption in (i) becomes much more akin to the one in (iii).

Furthermore, when g(s) = sq−1 with q > p, the constant C1 in condition (g1) specializes

in

C1 =


+∞ if p > 2,

q − 2 if p = 2,

0 if 1 < p < 2,

and consequently Theorem 4.1 specializes in Theorem 1.1.

We sketch below the proof of Theorem 4.1, we refer to [3] for more details.

Clearly, part (ii) of the theorem can be seen as an immediate consequence of part (i),

being C1 = ∞ greater than every eigenvalue λrad
k . Furthermore, the proof of part (iii) is

rather technical. Hence, we present below only the main ideas behind the proof of part

(i) and we highlight the main reasons why the results for C1 = 0 differs so much from the

ones for C1 ∈ (0,+∞).

• Sketch of the proof of Theorem 4.1-(i). We split the proof into six steps.

Step 1. (Equivalent 1-dimensional problem) Since we are dealing with radial positive

solutions of (2), we can extend g to the whole of R in such a way that

f(s) :=

g(s)− sp−1 if s ≥ 0,

0 if s < 0

and write the problem in radial coordinates

(4)

−(rN−1|u′|p−2u′)′ = rN−1f(u) in (0, R)

u′(0) = u′(R) = 0.

We observe that while the condition u′(R) = 0 comes from Neumann boundary conditions

in (2), u′(0) = 0 is implied by symmetry and regularity of the solution.

Then we prove (cf. [3, Lemma 2.1]) the following maximum principle-type result.

If u solves (4), then either u > 0 in [0, R] or u ≡ −C for some C ≥ 0.
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As a consequence, in order to get (positive) solutions of the original problem (2), it is

enough to find non-constant solutions of (4).

Step 2. (Shooting method) Let ϕp(s) := |s|p−2s and v := rN−1ϕp(u
′).

We consider the ODE system

(5)



u′ = ϕ−1
p

(
v

rN−1

)
in (0, R),

v′ = −rN−1f(u) in (0, R),

u(0) = d ∈ [0, 1],

v(0) = 0.

We prove in [3, Lemma 2.2] global existence, uniqueness and continuous dependence for

(5). These results are not trivial because the system (5) is not regular for three different

reasons: at r = 0 we have a singularity of order r−
N−1
p−1 which is not integrable when

N ≥ p; ϕ−1
p is not Lipschitz continuous at 0 when p > 2; f is not Lipschitz continuous at

0 when 1 < p < 2. Nevertheless, using [9, Theorem 4], we are able to prove the following:

• For all d ∈ [0, 1] there exists a unique (ud, vd) global solution of (5).

• If dn → d then (udn , vdn)→ (ud, vd) uniformly in [0, R].

We observe that if (u, v) solves (5), then u′(0) = 0. This follows from the initial

condition v(0) = 0, cf. [7]. Furthermore, by the definition of v, if v(R) = 0, also

u′(R) = 0. Finally, for d = 0 and d = 1 we get the constant solutions u ≡ 0 and u ≡ 1,

respectively. Hence, in order to get a non-constant solution of (2),

We look for d ∈ (0, 1) such that the solution (ud, vd) of (5) satisfies vd(R) = 0.

This procedure is referred to as shooting method.

Step 3. (Equivalent system in p-polar coordinates)

If v(0) = v(R) = 0, by the regularity of v,

there exists r̄ ∈ (0, R) such that v′(r̄) = 0.

Thus, from the equation v′(r) = −rN−1f(u)

and by (geq), u(r̄) = 1.
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Furthermore, by uniqueness, if d 6= 1, (ud(r), vd(r)) 6= (1, 0) for all r ∈ [0, R]. This

means that non-constant solutions of (5) having v(R) = 0 turn around the point (1, 0) in

the phase plane (u, v).

Hence, we can pass to p-polar coordinates4 about (1, 0)

u− 1 = ρ
2
p cosp θ

v = −ρ
2
p′ sinp θ

⇒ if ρ > 0 :
u = 1 ⇔ θ = (j + 1

2
)πp (j ∈ Z)

v = 0 ⇔ θ = jπp (j ∈ Z)

to get the system

(6)


ρ′(r) =

p

2ρ
u′
[
ϕp(u− 1)− r(N−1)p′f(u)

]
θ′(r) = rN−1

[
p− 1

r(N−1)p′
| sinp θ|p

′
+

1

ρ2
(u− 1)f(u)

]
θ(0) = πp, ρ(0) = (1− d)p/2.

Thus, our goal becomes:

Find d ∈ (0, 1) such that θd(R) = jπp for some j ∈ Z.

We observe in passing that, by the equation for θ′ in (6) and by (geq), we know that θ

is monotone increasing.

Step 4. (Using the hypothesis 0 < C1 < λrad
k+1) By (g1) and by continuous dependence

on d, we get for d close to 1

(ud − 1)f(ud) > (C1 − ε) |ud − 1|p = (C1 − ε) ρ2
d| cosp θd|p.

4See [3, Section 2 and Lemma 2.3] for the definition and properties of the functions p-cosine cosp

and p-sine sinp. Their name is due to the fact that these functions share many properties with the

classical cosine and sine. For instance they are 2πp-periodic, where πp is the number πp = 2π(p−1)1/p
p sin(π/p) .

Furthermore, for p = 2, it holds cos2 = cos, sin2 = sin, and π2 = π. The use of these functions is common

in p-Laplacian problems, it allows to get the equation in ϑ of the associated eigenvalue system (9) not

coupled with the equation in %.
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Hence, by (6), since C1 > λrad
k+1, for ε > 0 sufficiently small and d close to 1

θ′d(r) = rN−1

[
p− 1

r(N−1)p′
| sinp θd|p

′
+

1

ρ2
d

(ud − 1)f(ud)

]
> rN−1

[
p− 1

r(N−1)p′
| sinp θd|p

′
+ (C1 − ε) | cosp θd|p

]
> rN−1

[
p− 1

r(N−1)p′
| sinp θd|p

′
+ λrad

k+1| cosp θd|p
]
.

Step 5. (The associated eigenvalue problem) We will estimate the number of times that

the solutions of the problem turn around (1, 0) by the number of times that the radial

eigenfunctions of the Neumann p-Laplacian turn around (0, 0) in the phase plane. To this

aim, we introduce the associated eigenvalue problem

(7)

−∆pφ = λrad|φ|p−2φ in BR,

∂νφ = 0 on ∂BR.

In [10, Theorem 1] it has been proved what follows.

The eigenvalue problem (7) has a countable number of eigenvalues 0 = λrad
1 < λrad

2 < . . .

which go to infinity as k →∞. Furthermore, the k-th eigenfunction φk has exactly k − 1

zeros in (0, R).

Since we are interested only in radial eigenvalues, we can write (7) as

(8)

−(rN−1ϕp(φ
′))′ = λrN−1ϕp(φ) in (0, R),

φ′(0) = φ′(R) = 0.

We now pass to p-polar coordinates around (0, 0), that is to sayφ = %
2
p cosp ϑ

ψ := rN−1|φ′|p−2φ′ = −%
2
p′ sinp(ϑ)

⇒ if % > 0 :
φ = 0 ⇔ ϑ = (j + 1

2
)πp (j ∈ Z)

ψ = 0 ⇔ ϑ = jπp (j ∈ Z).

Hence, system (8) becomes

(9)


%′(r) =

p

2%

(
1− λr(N−1)p′

)
ϕp(φ)φ′

ϑ′(r) = rN−1

[
p− 1

r(N−1)p′
| sinp ϑ|p

′
+ λ| cosp ϑ|p

]
ϑ(0) = πp, ϑ(R) = jπp (∃ j ∈ Z).



RADIAL p-LAPLACIAN SUPERCRITICAL NEUMANN PROBLEMS 69

From the second equation of (9), we get ϑ′(r) > 0. Therefore, the fact that φk+1 has

exactly k zeros reads as ϑλk+1
(R) = (k + 1)πp.

Step 6. (Comparing solutions with eigenfunctions) We now know that

• θ′d(r) > rN−1
[

p−1

r(N−1)p′ | sinp θd|p
′
+ λrad

k+1| cosp θd|p
]

for d close to 1, by Step 4.;

• θd(0) = ϑλk+1
(0) = πp;

• ϑ′λk+1
(r) = rN−1

[
p−1

r(N−1)p′ | sinp ϑλk+1
|p′ + λrad

k+1| cosp ϑλk+1
|p
]
, by Step 5.

Therefore, by Comparison Theorem

θd(R) > ϑλk+1
(R) = (k + 1)πp as d ∼ 1,

that is to say, the solution performs more than k half-turns around (1, 0) in the phase

plane. Then, by continuous dependence of (ud, vd) and hence of (ρd, θd) on d, and by the

fact that θ0(R) = πp (i.e., 0 turns), we obtain that there exist d1, . . . , dk ∈ (0, 1) such that

θdj(R) = (j + 1)πp for any j = 1, . . . , k,

2

2

3
2

which correspond to the k non-constant radial solutions u1, . . . , uk. Furthermore, since

θdj(0) = πp, θdj(R) = (j + 1)πp, and θdj is monotone increasing, we immediately get that

uj − 1 has exactly j zeros for any j = 1, . . . , k.

Remark 4.1. With reference to Figure 1, we observe that in the pure power case g(s) =

sq−1, from Step 2. we can see that the solutions detected in Theorem 4.1 belong to the

lower parts of the branches, since they all satisfy u(0) = d < 1.

• Comments on Theorem 4.1-(iii). From a technical point of view, in the proof of

part (i) it is crucial to have an estimate of the number of times that the solution of (5),

shot from a point d close enough to 1 of the u-axis, turns around the point (1, 0) in the

phase plane. Indeed, in Step 6. of part (i), we end up with the following estimate from

below θd(R) > (k + 1)πp for d ∼ 1. Instead, in the case C1 = 0, thanks to an adaptation

of [4, Corollary 5.1] (see [3, Lemma 2.8]), we get the following result:

If R > R∗(k), there exists d∗ ∈ (0, 1) such that θd∗(R) > (k + 1)πp.
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This means that we know that the number of half-turns is greater than k+1 for solutions

shot at the finite distance 1 − d∗ from the point (1, 0), and not in the limit as d → 1.

Furthermore, by (g1) and Gronwall’s inequality, we prove for λ = C1 = 0

θd(R)→ ϑ0(R) = πp as d→ 1.

This allow us to make the continuous-dependence procedure effective both for solutions

shot from u(0) = d ∈ (0, d∗) and for solutions shot from u(0) = d ∈ (d∗, 1). In this way, we

obtain the double of the solutions found for C1 ∈ (0,∞), as represented in the following

picture.

2

-

-- -

-

3
2

2-

*

*

~

+
2
++

+

32
+

2+

More precisely, from one side, by continuous dependence on d and since θ0(R) = πp, we

have that

there exist d−1 , . . . , d
−
k ∈ (0, d∗) s.t. θd−j (R) = (j + 1)πp for all j = 1, . . . , k.

On the other side, again by continuous dependence on d, being θd∗(R) > (k + 1)πp, we

obtain

there exist d+
1 , . . . , d

+
k ∈ (d∗, 1) s.t. θd+j (R) = (j + 1)πp for all j = 1, . . . , k.

From a numerical point of view, some simulations performed in [3, Section 3] for N = 1,

R = 1, p = 1.97 < 2, and g(s) = sq−1 show that for values of p < 2 sufficiently close to

2 the branches of solutions persist. Differently from what we found for p = 2, now each

branch splits into two and both the upper and the lower part of the branches fold, as

represented in Figure 3. This heuristically explains why for p < 2 we find the double of

solutions with respect to the case p = 2. Indeed, the shape of the branches is coherent with

the result found in Theorem 1.1-(iii), since for every value of q > p, each folded branch

contains now two different solutions having the same oscillatory behavior. Furthermore,

none of the branches seem to bifurcate from the constant solution u ≡ 1, but each of
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Figure 3. Qualitative representation of the first four branches of non-constant

solutions for problem (2) in the case N = 1, 1� p < 2, R = 1, g(s) = sq−1.

them seem to converge to the constant solution as q →∞. It looks like as the bifurcation

point has escaped to infinity.
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