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1. Introduction

The purpose of this article is to give a survey on various quite recent works on the

derivation of fractional Poincare inequalities out of usual ones. By this, we mean a self-

improving property from an H1 −L2 inequality to an Hs −L2 inequality. We will report

on several works starting on the euclidean case endowed with a general measure, the case

of Lie groups and Riemannian manifolds endowed also with a general measure and finally

the case of conformally flat manifolds with finite total Q-curvature and a more transparent

Gagliardo inequality.

2. The case of weighted Poincaré inequalities in various contexts

2.1. The case of the Euclidean space. Throughout this paper, we denote by M a

positive weight in L1(Rn). We assume that M is a C2 function and that this measure

M satisfies the usual Poincaré inequality: there exists a constant λ(M) > 0 such that

∀ f ∈ H1(Rn,M),

(1)

∫
Rn
|∇f(y)|2M(y) dy ≥ λ(M)

∫
Rn

∣∣∣∣f(y)−
∫
Rn
f(x)M(x) dx

∣∣∣∣2 M(y) dy.
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If the measureM can be writtenM = e−V , this inequality is known to hold (see [BBCG08],

or also [Vil09], Appendix A.19, Theorem 1.2, see also [DS90], Proof of Theorem 6.2.21 for

related criteria) whenever there exist a ∈ (0, 1), c > 0 and R > 0 such that

(2) ∀ |x| ≥ R, a |∇V (x)|2 −∆V ≥ c.

In particular, the inequality (1) holds, for instance, when M = (2π)−n/2 exp
(
− |x|2 /2

)
is

the Gaussian measure, but also when M(x) = e−|x|, and more generally when M(x) =

e−|x|
α

with α ≥ 1. Note that, when V is convex and

Hess(V ) ≥ cst Id

on the set where |V | < +∞, the measure M(x)dx satisfies the log-Sobolev inequality,

which in turn implies (1) (see [Led01]).

In the sequel, by L2(Rn,M), we mean the space of measurable functions on Rn which

are square integrable with respect to the measure M(x) dx, by L2
0(Rn,M) the subspace of

functions of L2(Rn,M) such that
∫
Rn f(x)M(x) dx = 0, and by H1(Rn,M), the Sobolev

space of functions in L2(Rn,M), the weak derivative of which belongs to L2(Rn,M).

As it shall be proved to be useful later on, remark that, under a slightly stronger

assumption than (2), the Poincaré inequality (1) admits the following self-improvement:

Proposition 2.1. Assume that M there exists ε > 0 such that

(3)
(1− ε) |∇V |2

2
−∆V −−−→

x→∞
+∞, M = e−V .

Then there exists λ′(M) > 0 such that, for all function f ∈ L2
0(Rn,M) ∩H1(Rn,M):

(4)

∫∫
Rn
|∇f(x)|2 M(x) dx ≥ λ′(M)

∫
Rn
|f(x)|2

(
1 + |∇ lnM(x)|2

)
M(x) dx.

We want to generalize the inequality (1) in the strenghtened form of Proposition 2.2,

replacing, in the right-hand side, the H1 semi-norm by a non-local expresssion in the

flavour of the Gagliardo semi-norms.

We establish the following theorem:

Theorem 2.1. Assume that M = e−V is a C2 positive L1 function which satisfies (3).

Let α ∈ (0, 2). Then there exist λα(M) > 0 and δ(M) (constructive from our proof and
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the usual Poincaré constant λ′(M)) such that, for any function f belonging to a dense

subspace of L2
0(Rn,M) , we have∫∫

Rn×Rn

|f(x)− f(y)|2

|x− y|n+α M(x) e−δ(M) |x−y| dx dy ≥(5)

λα(M)

∫
Rn
|f(x)|2

(
1 + |∇ lnM(x)|α

)
M(x) dx.

Remark 2.1. Inequality (5) could as usual be extended to any function f with zero average

such that both sides of the inequality make sense. In particular it is satisfied for any

function f with zero average belonging to the domain of the operator L = −∆ −∇V · ∇
that we shall introduce later on. As we shall see, this domain is dense in L2

0(Rn,M).

Observe that the left-hand side of (5) involves a fractional moment of order α related

to the homogeneity of the semi-norm appearing in the right-hand side. One could expect

in the left-hand side of (5) the Gagliardo semi-norm for the fractional Sobolev space

Hα/2(Rn,M), namely ∫∫
Rn×Rn

|f(x)− f(y)|2

|x− y|n+α M(x)M(y) dx dy.

Notice that, instead of this semi-norm, we obtain a “non-symmetric” expression. However,

our norm is more natural: one should think of the measure over y as the Lévy measure,

and the measure over x as the ambient measure. We emphasize on the fact that our

measure is rather general and in particular, as a corollary of Theorem 2.3, we obtain an

automatic improvement of the Poincaré inequality (1) by

∫∫
Rn×Rn

|f(x)− f(y)|2

|x− y|n+α M(x) dx dy ≥ λα(M)

∫
Rn
|f(x)|2 M(x) dx.

The question of obtaining Poincaré-type inequalities (or more generally entropy inequal-

ities) for Lévy operators was studied in the probability community in the last decades.

For instance it was proved by Wu [Wu00] and Chafäı [Cha04] that

EntΦ
µ (f) ≤

∫
Φ′′(f)∇f · σ · ∇f dµ+

∫ ∫
DΦ(f(x), f(x+ z)) dνµ(z) dµ(x)

(see also the use of this inequality in [GI08]) with

EntΦ
µ (f) =

∫
Φ(f) dµ− Φ

(∫
f dµ

)
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and DΦ is the so-called Bregman distance associated to Φ:

DΦ(a, b) = Φ(a)− Φ(b)− Φ′(b) (a− b),

where Φ is some well-suited functional with convexity properties, σ the matrix of diffusion

of the process, µ a rather general measure, and νµ the (singular) Lévy measure associated

to µ. Choosing Φ(x) = x2 and σ = 0 yields a Poincaré inequality for this choice of

measure (µ, νµ). The improvement of our approach is that we do not impose any link

between our measure M on x and the singular measure |z|−n−α on z = x− y. This is to

our knowledge the first result that gets rid of this strong constraint.

Remark 2.2. Note that the exponentially decaying factor e−δ(M) |x−y| in (5) also improves

the inequality as compared to what is expected from Poincaré inequality for Lévy measures.

This decay on the diagonal could most probably be further improved, as shall be studied

in futur works. Other extensions in progress are to allow more general singularities than

the Martin Riesz kernel 1
|x−y|n+α (see the book [Lan72]) and to develop an Lp theory of the

previous inequalities.

Our proof heavily relies on fractional powers of a (suitable generalization of the)

Ornstein-Uhlenbeck operator, which is defined by

Lf = −M−1 div(M ∇f) = −∆f −∇ lnM · ∇f,

for all f ∈ D(L) := {g ∈ H1(Rn,M); div(M∇g) ∈ L2(Rn)}. One therefore has, for all

f ∈ D(L) and g ∈ H1(Rn,M),∫
Rn
Lf(x)g(x)M(x) dx =

∫
Rn
∇f(x) · ∇g(x)M(x) dx.

It is obvious that L is symmetric and non-negative on L2(Rn,M), which allows to define

the usual power Lβ for any β ∈ (0, 1) by means of spectral theory. Note that Lα/2 is not

the symmetric operator associated to the Dirichlet form
∫∫

Rn×Rn
|f(x)−f(y)|2

|x−y|n+α M(x) dx dy.

We now describe the strategy of our proofs. The proof of Theorem 2.3 goes in three

steps. We first establish L2 off-diagonal estimates of Gaffney type on the resolvent of L

on L2(Rn,M). These estimates are needed in our context since we do not have Gaussian

pointwise estimates on the kernel of the operator L.
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Then, we bound the quantity∫
Rn
|f(x)|2 (1 + |∇ lnM(x)|α) M(x) dx

in terms of
∥∥Lα/4f∥∥2

L2(Rn,M)
. This will be obtained by an abstract argument of functional

calculus based on rewriting in a suitable way the conclusion of Proposition 2.2. Finally,

using the L2 off-diagonal estimates for the kernel of L, we establish that∥∥Lα/4f∥∥2

L2(Rn,M)
≤ C

∫∫
Rn×Rn

|f(x)− f(y)|2

|x− y|n+α M(x) dx dy,

which would conclude the proof.

2.2. The case of Lie groups. Let G be a unimodular connected Lie group endowed

with a measure M(x) dx where M ∈ L1(G) and dx stands for the Haar measure on G.

By “unimodular”, we mean that the Haar measure is left and right-invariant. We always

assume that M is bounded and M = e−v where v is a C2 function on G. If we denote by

G the Lie algebra of G, we consider a family

X = {X1, ..., Xk}

of left-invariant vector fields on G satisfying the Hörmander condition, i.e. G is the Lie

algebra generated by the X ′is. A standard metric on G , called the Carnot-Caratheodory

metric, is naturally associated with X and is defined as follows: let ` : [0, 1] → G be an

absolutely continuous path. We say that ` is admissible if there exist measurable functions

a1, ..., ak : [0, 1]→ C such that, for almost every t ∈ [0, 1], one has

`′(t) =
k∑
i=1

ai(t)Xi(`(t)).

If ` is admissible, its length is defined by

|`| =
∫ 1

0

(
k∑
i=1

|ai(t)|2 dt

) 1
2

.

For all x, y ∈ G, define d(x, y) as the infimum of the lengths of all admissible paths

joining x to y (such a curve exists by the Hörmander condition). This distance is left-

invariant. For short, we denote by |x| the distance between e, the neutral element of the

group and x, so that the distance from x to y is equal to |y−1x|.
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For all r > 0, denote by B(x, r) the open ball in G with respect to the Carnot-

Caratheodory distance and by V (r) the Haar measure of any ball. There exists d ∈ N∗

(called the local dimension of (G,X)) and 0 < c < C such that, for all r ∈ (0, 1),

crd ≤ V (r) ≤ Crd,

see [NSW85]. When r > 1, two situations may occur (see [Gui73]):

• Either there exist c, C,D > 0 such that, for all r > 1,

crD ≤ V (r) ≤ CrD

where D is called the dimension at infinity of the group (note that, contrary to d,

D does not depend on X). The group is said to have polynomial volume growth.

• Or there exist c1, c2, C1, C2 > 0 such that, for all r > 1,

c1e
c2r ≤ V (r) ≤ C1e

C2r

and the group is said to have exponential volume growth.

When G has polynomial volume growth, it is plain to see that there exists C > 0 such

that, for all r > 0,

(6) V (2r) ≤ CV (r),

which implies that there exist C > 0 and κ > 0 such that, for all r > 0 and all θ > 1,

(7) V (θr) ≤ CθκV (r).

Denote by H1(G, dµM) the Sobolev space of functions f ∈ L2(G, dµM) such that Xif ∈
L2(G, dµM) for all 1 ≤ i ≤ k. We are interested in L2 Poincaré inequalities for the measure

dµM . In order to state sufficient conditions for such an inequality to hold, we introduce

the operator

LMf = −M−1

k∑
i=1

Xi

{
MXif

}
for all f such that

f ∈ D(LM) :=

{
g ∈ H1(G, dµM);

1√
M
Xi

{
MXig

}
∈ L2(G, dx), ∀1 ≤ i ≤ k

}
.
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One therefore has, for all f ∈ D(LM) and g ∈ H1(G, dµM),∫
G

LMf(x)g(x)dµM(x) =
k∑
i=1

∫
G

Xif(x) ·Xig(x)dµM(x).

In particular, the operator LM is symmetric on L2(G, dµM).

Following [?], say that a C2 function W : G→ R is a Lyapunov function if W (x) ≥ 1 for

all x ∈ G and there exist constants θ > 0, b ≥ 0 and R > 0 such that, for all x ∈ G,

(8) −LMW (x) ≤ −θW (x) + b1B(e,R)(x),

where, for all A ⊂ G, 1A denotes the characteristic function of A. We first claim:

Theorem 2.2. Assume that G is unimodular and that there exists a Lyapunov function

W on G. Then, dµM satisfies the following L2 Poincaré inequality: there exists C > 0

such that, for every function f ∈ H1(G, dµM) with
∫
G
f(x)dµM(x) = 0,

(9)

∫
G

|f(x)|2 dµM(x) ≤ C
k∑
i=1

∫
G

|Xif(x)|2 dµM(x).

Let us give, as a corollary, a sufficient condition on v for (9) to hold:

Corollary 2.1. Assume that G is unimodular and there exist constants a ∈ (0, 1), c > 0

and R > 0 such that, for all x ∈ G with |x| > R,

(10) a
k∑
i=1

|Xiv(x)|2 −
k∑
i=1

X2
i v(x) ≥ c.

Then (9) holds.

Notice that, if (10) holds with a ∈
(
0, 1

2

)
, then the Poincaré inequality (9) admits the

following improvement:

Proposition 2.2. Assume that G is unimodular and that there exist constants c > 0,

R > 0 and ε ∈ (0, 1) such that, for all x ∈ G,

(11)
1− ε

2

k∑
i=1

|Xiv(x)|2 −
k∑
i=1

X2
i v(x) ≥ c whenever |x| > R.

Then there exists C > 0 such that, for every function f ∈ H1(G, dµM) such that
∫
G
f(x)dµM(x) =

0:

(12)

∫
G

|f(x)|2
(

1 +
k∑
i=1

|Xiv(x)|2
)
dµM(x) ≤ C

k∑
i=1

∫
G

|Xif(x)|2 dµM(x)
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Observe that (10) and (11) are satisfied for instance, when M = exp
(
− |x|2 /2

)
is a

Gaussian measure, but also when M(x) = e−|x|, and more generally when M(x) = e−|x|
α

with α ≥ 1.

Finally, we obtain Poincaré inequalities for dµM involving a non local term.

Theorem 2.3. Let G be a unimodular Lie group with polynomial growth. Let dµM =

Mdx be a measure absolutely continuous with respect to the Haar measure on G where

M = e−v ∈ L1(G) is assumed to be bounded and v ∈ C2(G).

1. Assume that there exist constants a ∈ (0, 1), c > 0 and R > 0 such that, for all

x ∈ G with |x| > R, (10) holds. Then there exists λα(M) > 0 such that, for any

function f ∈ D(G) satisfying
∫
G
f(x) dµM(x) = 0,

(13)

∫
G

|f(x)|2 dµM(x) ≤ λα(M)

∫∫
G×G

|f(x)− f(y)|2

V (|y−1x|) |y−1x|α
dx dµM(y).

2. Assume that there exist constants c > 0, R > 0 and ε ∈ (0, 1) such that (11) holds.

Let α ∈ (0, 2). Then there exists λα(M) > 0 such that, for any function f ∈ D(G)

satisfying
∫
G
f(x) dµM(x) = 0,∫

G

|f(x)|2
(

1 +
k∑
i=1

|Xiv(x)|2
)α/2

dµM(x)(14)

≤ λα(M)

∫∫
G×G

|f(x)− f(y)|2

V (|y−1x|) |y−1x|α
dx dµM(y).

2.3. The case of Riemannian manifolds. LetM be a Riemannian manifold, denote by

n its dimension, by dµ its Riemannian measure and by ∆ the Laplace-Beltrami operator.

For all x ∈ M and all r > 0, let B(x, r) be the open geodesic ball centered at x with

radius r, and V (x, r) its measure.

In order to apply our method, we will need to be able to control by below the volume of

any geodesic ball B(x, r) by a quantity of the type rp. The goal of the next paragraph is

to give sufficient assumptions on M such that this control occurs.

The first one is a Faber-Krahn inequality onM. For any bounded open subset Ω ⊂M,

denote by λD1 (Ω) the principal eigenvalue of −∆ on Ω under the Dirichlet boundary

condition. If p ≥ n, consider the following Faber-Krahn inequality: there exists C > 0

such that

(15) λD1 (Ω) ≥ Cµ(Ω)
2
p for all bounded subset Ω ⊂M.
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Let Λp > 0 be the greatest constant for which (15) is satisfied. In other words,

Λp = inf
λD1 (Ω)

µ(Ω)
2
p

,

where the infimum is taken over all bounded subsets Ω ⊂M. The Faber-Krahn inequality

(15) is satisfied in particular when an isoperimetric inequality holds onM: namely there

exists C > 0 and p ≥ n such that, for all bounded smooth subset Ω ⊂M,

(16) σ(∂Ω) ≥ Cµ(Ω)1− 1
p ,

where σ(∂Ω) denotes the surface measure of ∂Ω. If M has nonnegative Ricci curvature,

then (16) with p = n and (15) with p = n are equivalent. More generally, if M has

Ricci curvature bounded from below by a constant, (15) with p > 2n implies (16) with p
2

([Car96], Proposition 3.1, see also [Cou92] when the injectivity radius ofM is furthermore

assumed to be bounded). Note that there exists a Riemannian manifold satisfying (15)

for some p ≥ n but for which (16) does not hold for any p ≥ n ([Car96], Proposition 3.4).

It is a well-known fact that (15) implies a lower bound for the volume of geodesic balls in

M. Namely ([Car96], Proposition 2.4), if (15) holds, then, for all x ∈M and all r > 0,

(17) V (x, r) ≥
(

Λp

2p+2

) p
2

rp.

We will also need another assumption on the volume growth of the balls inM, already

encountered in the present work in the case of Lie groups . Say thatM has the doubling

property if and only if there exists C > 0 such that, for all x ∈M and all r > 0,

(D) V (x, 2r) ≤ CV (x, r).

There is a wide class of manifolds on which (D) holds. First, as already said in the intro-

duction (see (6)), it is true on Lie groups with polynomial volume growth (in particular on

nilpotent Lie groups). Next, (D) is true if M has nonnegative Ricci curvature thanks to

the Bishop comparison theorem (see [BC64]). Recall also that (D) remains valid if M is

quasi-isometric to a manifold with nonnegative Ricci curvature, or is a cocompact covering

manifold whose deck transformation group has polynomial growth, [CSC95]. Contrary

to the doubling property, the nonnegativity of the Ricci curvature is not stable under

quasi-isometry.
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The last assumption we need on M is a local L2 Poincaré inequality on balls for the

Riemannian measure. Namely, if R > 0, say that M satisfies (PR) if and only if there

exists CR > 0 such that, for all x ∈M, all r ∈ (0, R) and all function f ∈ C∞(B(x, r)),

(PR)

∫
B(x,r)

∣∣f(x)− fB(x,r)

∣∣2 dµ(x) ≤ CRr
2

∫
B(x,r)

|∇f(x)|2 dµ(x).

Note that (??) shows that, on a unimodular Lie group G equipped with vector fields as in

the introduction, such a Poincaré inequality always holds. Recall that (PR) always holds

for all R > 0 for instance when M has nonnegative Ricci curvature ([Bus82]).

Under these assumptions, the proof developed above in the context of groups, can be

adapted verbatim to give the following result.

Theorem 2.4. Let M be a complete non compact Riemannian manifold. Assume that

(15) holds, that M has the doubling property and that (PR) holds for some R > 0. Let v

be a C2 function on M and M = e−v.

1. Assume that there exists x0 ∈M and constants a ∈ (0, 1) and c > 0 such that, for

all x ∈ G with d(x, x0) > R,

(18) a |∇v(x)|2 −∆v(x) ≥ c.

Then, there exists C > 0 such that, for every function f ∈ H1(M,Mdµ) such that∫
M f(x)M(x)dµ = 0, for all α ∈ (0, 1),

(19)

∫
M
f 2(x)M(x)dµ(x) ≤ C

∫∫
M×M

|f(y)− f(x)|2

d(x, y)p+α
M(x)dµ(x)dµ(y).

2. Assume there exist x0 ∈ M and constants c > 0 and ε ∈ (0, 1) such that, for all

x ∈M,

(20)
1− ε

2
|∇v(x)|2 −∆v(x) ≥ c whenever d(x, x0) > R.

Then there exists C > 0 such that, for every function f ∈ H1(M,Mdµ) such that∫
M f(x)M(x)dµ = 0, for all α ∈ (0, 1),

(21)

∫
M
f 2(x)(1 + |∇v|2)α/2M(x)dµ(x) ≤ C

∫∫
M×M

|f(y)− f(x)|2

d(x, y)p+α
M(x)dµ(x)dµ(y).
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3. An excursion on Q-curvature and fractional Poincaré inequalities

Theorem 3.1. Let (Mn, g) = (Rn, g = e2u|dx|2) be a complete noncompact even dimen-

sional manifold. Let Q+ and Q− denote the positive and negative part of Qg respectively;

and dvg denote the volume form of M . Suppose g = e2u|dx|2 is a “normal” metric, i.e.

(22) u(x) =
1

cn

∫
Rn

log
|y|
|x− y|

Qg(y)dvg(y) + C;

for some constant C. If

(23) β+ :=

∫
Mn

Q+dvg < cn

where cn = 2n−2(n−2
2

)!π
n
2 , and

(24) β− :=

∫
Mn

Q−dvg <∞,

then (Mn, g) satisfies the fractional Poincaré inequality with constant depending only on

n, β+ and β−. Namely, for α ∈ (0, 2), there exists C > 0 depending only on n, β+ and

β−, such that for any function f in C2(Mn) and any Euclidean ball B, ω(x) = enu(x)

(25)

∫
B

|f(x)− fB,ω|2ω(x)dx ≤ C

∫
2B

∫
2B

|f(x)− f(y)|2

dg(x, y)n+α
ω(x)ω(y)dxdy.
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