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Abstract. In this note I give a short overview about convexity properties of solutions to

elliptic equations in convex domains and convex rings and show a result about the optimal

concavity of the Newtonian potential of a bounded convex domain in Rn, n ≥ 3, namely:

if the Newtonian potential of a bounded domain is ”sufficiently concave”, then the domain

is necessarily a ball. This result can be considered an unconventional overdetermined

problem.

This paper is based on a talk given by the author in Bologna at the ”Bruno Pini

Mathematical Analysis Seminar”, which in turn was based on the paper [26].

Sunto. In questa nota, darò un breve resoconto sulle proprietà di convessità di soluzioni

di equazioni ellittiche in domini convessi o in anelli convessi e mostrerò un risultato di

convessità ottimale per il potenziale Newtoniano di un dominio convesso in Rn (n ≥ 3).

In pratica: se il potenziale di un dominio convesso è ”sufficientemente concavo”, allora

il dominio è necessariamente una palla. Questo risultato può essere considerato un

problema sovradeterminato di tipo non convenzionale.

Questo articolo è basato sul contenuto di un seminario tenuto dall’autore nell’ambito

del ”Seminario di Analisi Matematica Bruno Pini” presso l’Università di Bologna. Il

seminario era a sua volta basato sull’articolo [26].
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1. Introduction

Convexity properties of solutions to partial differential equations have been an inter-

esting issue of investigations since many years and to compile an exhaustive bibliography

is almost impossible. Classical results are for instance the following.

1. The Torsion Problem

Let Ω be a convex domain in Rn, n ≥ 2, and u solve

(1)


∆u = −1 in Ω ,

u = 0 on ∂Ω .

Then
√
u is a concave function (this was first proved by L. Makar-Limanov [24] in the

plane, for n ≥ 3 see [2, 19]). The solution u of (1) is called the torsion function of Ω.

2. The Eigenvalue Problem

Let u1 be a positive eigenfunction for the first positive Dirichlet eigenvalue of the Lapla-

cian, i.e.

(2)


∆u1 = −λ1(Ω)u1 in Ω ,

u1 = 0 on ∂Ω , u1 > 0 in Ω .

If Ω is convex, then log u1 is a concave function (see [3]).

3. The Capacity problem

The Newtonian capacity of a bounded open set Ω in Rn, n ≥ 3, is defined as

(3) Cap(Ω) = inf

{∫
Rn

1

2
|∇v|2dx : v ∈ C∞0 (Rn), v ≥ 1 in Ω

}
where | · | denotes the Euclidean norm in Rn. When Ω is sufficiently regular, and in

particular if it is convex, (3) admits a unique minimizer uΩ, which solves the following
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problem

(4)


∆uΩ = 0 in Rn \ Ω ,

uΩ = 1 in Ω ,

uΩ → 0 if |x| → ∞

and it is called the Newtonian potential of Ω.

Gabriel [14] and Lewis [20] proved that if Ω is convex, then all the superlevel sets

{uΩ ≥ t} of uΩ are convex.

The above results can be conveniently expressed by using the language of p-means and

power concave functions, then let me introduce some notation.

Let p ∈ [−∞,+∞] and µ ∈ (0, 1). Given two real numbers a > 0 and b > 0, the

quantity

Mp(a, b;µ) =



max{a, b} p = +∞

((1− µ)ap + µbp)
1
p for p 6= −∞, 0,+∞

a1−µbµ p = 0

min{a, b} p = −∞.

is the (µ-weighted) p-mean of a and b.

For a, b ≥ 0, we set Mp(a, b;µ) = 0 if ab = 0 (for any p).

Notice that for p = 1 we have the usual arithmetic mean, for p = 0 we have the usual

geometric mean. A simple consequence of Jensen’s inequality is

(5) Mp(a, b;µ) ≤Mq(a, b;µ) if p ≤ q .

Moreover, we have

lim
p→±∞

Mp(a, b;µ) = M±∞(a, b;µ) and lim
p→0

Mp(a, b;µ) = M0(a, b;µ) .

Let Ω be an open convex set in Rn and p ∈ [−∞,∞]. A function v : Ω → [0,+∞) is

said p -concave if

v((1− µ)x+ µy) ≥Mp(v(x), v(y);µ)

for all x, y ∈ Ω and µ ∈ (0, 1).
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In the cases p = 0 and p = −∞, v is also said log-concave and quasi-concave

respectively. In other words, a non-negative function u, with convex support Ω, is p-

concave if:

- it is a non-negative constant in Ω, for p = +∞;

- up is concave in Ω, for p > 0 (p = 1 corresponds to usual concavity);

- log u is concave in Ω, for p = 0 (log-concave);

- up is convex in Ω, for p < 0;

- it is quasi-concave, i.e. all of its superlevel sets are convex, for p = −∞.

For more details on power concave functions, see [19].

In force of the above introduced notation and terminology, we can rephrase the previous

examples as follows:

1. the torsion function of a convex domain is (1/2)-concave;

2. the first positive eigenfunction of the Laplacian (with Dirichlet boundary condition) of

a convex domain is log-concave;

3. the Newtonian potential of a convex domain is quasi-concave.

It follows from (5) that if v is p -concave, then v is q -concave for any q ≤ p. Then,

following [19], it makes sense to define the the concavity exponent of a quasi-concave

function v as

(6) a(v) = sup{β ∈ R : v is β-concave}

and then to introduce the Newtonian concavity exponent of a convex domain Ω as

(7) α(Ω) = a(uΩ) ,

where uΩ is the Newtonian potential of Ω, given by the solution of (4).

Thanks to the continuity of Mp with respect to p, it is easily seen that when a(v) ∈ R

the supremum in (6) is in fact a maximum.

Since quasi-concavity is the weakest conceivable concavity property, the result above

described about Newtonian potentials may look weak and one can expect α(Ω) > −∞
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if Ω is strictly convex and sufficiently regular. Indeed, when Ω is a ball, α(Ω) is easily

calculated: the potential of a ball B centered at x0 of radius R is

uB(x) =
|x− x0|2−n

R2−n ,

then

α(B) =
1

2− n
Here we want to study the behavior of α(Ω) and prove that

(8) −∞ ≤ α(Ω) ≤ 1

2− n
for every convex set Ω ⊂ Rn .

Moreover the two inequalities are sharp and the second one is also rigid, in the sense

specified by the following two theorems from [26]

Theorem 1.1 (Proposition 5.1 in [26]). For every n ≥ 3, there exist (infinitely many)

convex sets Ω ⊂ Rn such that α(Ω) = −∞.

Theorem 1.2 (Theorem 1.1 in [26]). For every bounded convex set Ω ⊂ Rn it holds

α(Ω) ≤ 1

2− n

and equality holds if and only if Ω is a ball.

The former theorem is proved just by showing an example. To prove the latter, we will

use four main ingredients.

Ingredient 1. An easy relation existing between the Capacity of a generic level set of

uΩ and the Capacity of Ω.

Ingredient 2. An expression of Capacity through the behavior at infinity of the

potential function.

Ingredient 3. A level sets characterization of the concavity of a function.

Ingredient 4. The Brunn-Minkowski inequality for Capacity and its equality condi-

tion.

Ingredients 1 and 2 are mainly needed to study another overdetermined problem which

has its own interest.
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Theorem 1.3 (Theorem 1.2 in [26]). If the solution uΩ of (4) has two homothetic convex

level sets, then Ω is a ball.

In particular: if uΩ has a level set that is homothetic to Ω (and Ω is convex), then Ω is

a ball. I recall here that two sets A,B ⊂ Rn are said homothetic if there exist ρ > 0 and

ξ ∈ Rn such that B = ρA+ ξ, i.e. if they are dilate and translate of each other.

The rest of the paper is organized as follows. Section 2 supplies the needed ingredients

1-4. In section Section 3 we will use the ingredients to cook the proofs of Theorem 1.3

and Theorem 1.2. Section 4 contains the proof ot Theorem 1.1, while in Section 5 there

are some final remarks and comments about similar results for the torsional rigidity.

2. Preliminaries

2.1. Ingredient 1: the capacity of a level set of the potential. Let u be the

Newtonian potential of a domain Ω and set

Ω(t) = {x ∈ Rn : u(x) ≥ t}

for t ∈ (0, 1]. Then it is easily seen that the potential ut of Ω(t) is given by ut(x) = t−1u(x)

and an integration by parts yields

Cap(Ω) =

∫
∂Ω

|∇u| dσ =

∫
∂Ω(t)

|∇u| dσ for every t ≤ 1 ,

whence

Cap(Ω(t)) =

∫
∂Ω(t)

|∇ut| dσ = t−1

∫
∂Ω(t)

|∇u| dσ = t−1Cap(Ω) .

This is the first ingredient that we rewrite and label for better convenience:

(9) Cap(Ω(t)) = t−1Cap(Ω) .

2.2. Ingredient 2: an expression of Newtonian capacity through the behavior

at infinity of the potential. The following relation between the Newton capacity of a

convex domain and the behavior at infinity of the newtonian potential holds:

(10) Cap(Ω) = (n− 2)ωn lim
|x|→∞

u(x)|x|n−2 ,
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where ωn denotes the surface area of the unit sphere in Rn. An analogous relation holds

also for p-Capacity, p ∈ (1, n) (refer to [10] for instance).

2.3. Ingredient 3: how to read concavity on the level sets. A function u is concave

if and only if the following relation between its level sets holds:

(11) {u ≥ (1− λ)`0 + λ`1} ⊇ (1− λ){u ≥ `0}+ λ{u ≥ `1}

for every `0, `1 ∈ R and every λ ∈ [0, 1].

Here ”+” stands for the Minkowski addition, which is defined as follows

A+B = {x+ y | x ∈ A, y ∈ B} ,

while λA = {λx : x ∈ A} for any λ ∈ R, as usual.

To verify (11) is trivial.

Analogously we have the following characterization of power concavity:

The function u ≥ 0 is p-concave if and only if

(12) {u ≥Mp(t0, t1;λ)} ⊇ (1− λ){u ≥ t0}+ λ {u ≥ t1}

for every t0, t1 > 0 and for every λ ∈ (0, 1). The proof is straightforward.

2.4. Ingredient 4: the Brunn-Minkowski inequality for p-capacity. We will use

the following theorem.

Theorem 2.1. Let K1 and K2 be n–dimensional convex bodies (i.e. compact convex

subsets of Rn with non–empty interior), n ≥ 3. Then

(13) [Cap(λK1 + (1− λ)K2)]
1

n−2 ≥ λ [Cap(K1)]
1

n−2 + (1− λ) [Cap(K2)]
1

n−2 ,

for every λ ∈ [0, 1]. Moreover equality holds if and only if K1 and K2 are homothetic.

Inequality (13) was proved by C. Borell [2] and more recently in [5] L.A. Caffarelli, D.

Jerison and E.H. Lieb treated the equality case. In [10] the treatments of the inequality

and of its equality case are unified and the results are extended to the so called p-capacity.

Roughly speaking (13) says that Cap(·)
1

n−2 is a concave function in the class of convex

bodies endowed with the Minkowsky addition. But here we are mainly interested in the

equality condition: equality holds in (13) if and only if K1 and K2 are homothetic.
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Let us pick the occasion to recall that the original form of the Brunn–Minkowski in-

equality involves volumes of convex bodies and states that Voln(·)1/n is a concave function

with respect to the Minkowski addition, i.e.

(14) [Voln(λK1 + (1− λ)K2)]
1
n ≥ λ [Voln(K1)]

1
n + (1− λ) [Voln(K2)]

1
n

for every convex bodies K1 and K2 and λ ∈ [0, 1]. Here Voln is the n-dimensional Lebesgue

measure. Inequality (14) is one of the fundamental results in the modern theory of convex

bodies; it can be extended to measurable sets and it is intimately connected to several

other important inequalities of analysis and geometry, e.g. the isoperimetric inequality.

Suitable versions of the Brunn-Minkowski inequality hold also for the other quermassin-

tegrals (see for instance [31]) and recently Brunn-Minkowski type inequalities have been

proved for several important functionals of calculus of variations (see for instance the

beautiful survey paper [15] by R. Gardner and [1, 9, 27] for more recent references).

Notice that in all the known cases, equality conditions are the same as in the classical

Brunn-Minkowski inequality for the volume, i.e. equality holds if and only if the involved

sets are (convex and) homothetic (i.e. translate and dilate of each other).

3. Proof of the main theorems

First we prove Theorem 1.3.

Proof of Theorem 1.3. Hereafter, for simplicity we write u instead of uΩ. Assume u has

two homothetic level sets Ω(r) and Ω(s), for some 0 < r < s ≤ 1. This means that there

exist ρ > 1 and ξ ∈ Rn such that Ω(r) = ρΩ(s) + ξ. Up to a translation, we can assume

ξ = 0, i.e.

(15) Ω(r) = ρΩ(s) .

Then, if we denote as ur and us the Newtonian potentials of Ω(r) and Ω(s) respectively,

it must hold

ur(x) = us
(x
ρ

)
.
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On the other hand,

ur(x) =
u(x)

r
for x ∈ Rn \ Ω(r) ,

us(x) =
u(x)

s
for x ∈ Rn \ Ω(s) ,

as we have already observed when introducing Ingredient 1.

Coupling the latter and the former, we finally get

(16) u(x) =
r

s
u
(x
ρ

)
, x ∈ Rn \ Ω(r) .

whence

Ω(t) = ρΩ(
s

r
t) for t < r .

Moreover Ingredient 2 yields(
Cap(Ω)

(n− 2)ωn

) 1
p−1

= lim|x|→∞ u(x)|x|
n−p
p−1 =

r

s
lim|x|→∞ u

(x
ρ

)
|x|

n−p
p−1

=
r

s
ρ

n−p
p−1 lim|x|→∞ u

(x
ρ

)( |x|
ρ

)n−p
p−1

=
r

s
ρ

n−p
p−1

(
Cap(Ω)

(n− 2)ωn

) 1
p−1

,

whence

(17)
r

s
= ρ

p−n
p−1 .

Hence, by setting

s0 = s , , s1 = r , sk =
(r
s

)k
s = ρ

k(p−n)
p−1 s , k = 2, 3, . . . ,

it holds

lim
k→∞

sk = 0

and

(18) Ω(sk) = ρΩ(sk−1) = ρ2Ω(sk−2) = · · · = ρkΩ(s0) = ρkΩ(s) .
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Now let x, y ∈ ∂Ω(s) (with x 6= 0 and y 6= 0), i.e.

u(x) = u(y) = s ,

and set

xk = ρkx , yk = ρky .

Then

lim
k→∞
|xk| = lim

k→∞
|yk| =∞

and Ingredient 2 yields

(19) lim
k→∞

u(xk)|xk|
p−1
n−p =

(
Cap(Ω)

(n− 2)ωn

)1/(p−1)

= lim
k→∞

u(yk)|yk|
p−1
n−p .

On the other hand

u(xk) = u(yk) = sk ,

hence (19) reads

lim
k→∞

sk|xk|
p−1
n−p = lim

k→∞
sk|yk|

p−1
n−p ,

that is

lim
k→∞

(
ρ

k(p−n)
p−1 s

∣∣ρkx∣∣ p−1
n−p

)
= lim

k→∞

(
ρ

k(p−n)
p−1 s

∣∣ρky∣∣ p−1
n−p

)
.

Since

k(p− n)

p− 1
+
k(p− 1)

n− p
= 0 ,

we finally have

|x| = |y| =: R ,

which means that Ω(s) is a ball or radius R centered at the origin. Then u is radial in

Rn \ Ω(s) and, by analytic continuation, it is radial in Rn \ Ω and Ω is a ball.

�

Now we can prove Theorem 1.2.
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Proof of Theorem 1.2. Let u ∈ C2(Rn \ Ω) ∩ C(Rn) be the Newtonian potential of the

convex set Ω and

q = − 1

n− 2
.

First we recall that if u is α-concave for some α ≥ q, then it is q-concave. Next we will

proceed by proving that, if u is q-concave, then all its level sets are homothetic and the

proof will be concluded thanks to Theorem 1.3.

Assume that u is q-concave, i.e.

v = uq is convex in Rn .

Now take r, s ∈ (0, 1], fix λ ∈ (0, 1) and set

(20) t = Mq(r, s;λ) = [(1− λ)rq + λ sq]1/q .

Ingredient 3 yields

(21) Ω(t) ⊇ (1− λ) Ω(r) + λΩ(s) .

where

Ω(r) = {u ≥ r} , Ω(s) = {u ≥ s} , Ω(t) = {u ≥ t} .

Thanks to the monotonicity of capacity with respect to set inclusion, (21) implies

Cap(Ω(t)) ≥ Cap
(
(1− λ) Ω(r) + λΩ(s)

)
and using the Brunn-Minkowski inequality for capacity (Ingredient 4) we get

(22)
Cap(Ω(t))1/(n−2) ≥ Cap

(
(1− λ) Ω(r) + λΩ(s)

)1/(n−2) ≥

≥ (1− λ) Cap(Ω(r))1/(n−2) + λCap(Ω(s))1/(n−2) .

On the other hand, by Ingredient 1 we have

Cap(Ω(r)) = r−1Cap(Ω) ,

Cap(Ω(s)) = s−1Cap(Ω) ,

Cap(Ω(t)) = t−1Cap(Ω) .
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Plugging these into (22) and taking into account the expression (20) of t in terms of r

and s, we finally get

Cap(Ω(t))1/(n−2) = [(1− λ)r−1/(n−2) + λ s−1/(n−2)]Cap(Ω)1/(n−2) =

= (1− λ)[r−1 Cap(Ω)]1/(n−2) + λ [s−1Cap(Ω)]1/(n−2) =

= (1− λ) Cap(Ω(r))1/(n−2) + λCap(Ω(s))1/(n−2) ,

i.e. equality holds in (22).

Hence equality must hold in the Brunn-Minkowski inequality for Capacity for Ω(r) and

Ω(s). Then Ω(r) and Ω(s) must be homothetic and the conclusion follows from Theorem

1.3.

�

Remark 3.1. Notice that the above proof provides in fact a stronger result than Theorem

1.2. Indeed in the proof we do not use the full strength of the 1/(2− n)-concavity of the

potential function, but just the existence of three convex super level sets

Ω(r) = {x ∈ Rn : u(x) ≥ r} , Ω(s) = {x ∈ Rn : u(x) ≥ s} , Ω(t) = {x ∈ Rn : u(x) ≥ t}

(say 0 < s < r ≤ 1) such that

[(1− λ)rq + λ sq]1/q ≤ t < r

and

Ω(t) ⊇ (1− λ) Ω(r) + λΩ(s)

for some λ ∈ (0, 1).

Let me also point out that convexity is needed only in order to apply the BM Inequality

for Capacity, that has been proved only for convex sets up to now.

4. Genuinely quasi-concave potentials

Now, let us prove Theorem 1.1.

Let n ≥ 3. We want to prove that there exist infinitely many convex set such that

α(Ω) = −∞, i.e whose Newtonian potential is not p-concave for any p ∈ R.
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Consider an hypercube Q = {x = (x1, . . . , xn) : |xi| < 1 i = 1, . . . , n} and let uQ be its

Newtonian potential. Then it is easily seen by a barrier argument (see for instance [25,

Section 4.2]) that ∇uQ blows up on the vertices and edges of Q (in fact at every singular

point of ∂Q). Then, for any p < 0, the gradient of v = upQ blows up at the same points

too, hence v can not be convex.

The argument obviously works for every convex polytopes. �

A natural question is now whether for every p ∈ (−∞,−1/(n−2)) there exists a convex

set Ω such that α(Ω) = p. Without pretending to give here an exhaustive answer, we

notice that the level sets Qt = {uQ ≥ t} of uQ can provide a solution to this question,

since they smoothly change from an hypercube to a ball as t→ 0. Then α(Qt) smoothly

increases from −∞ to −1/(n− 2) as t decreases from 1 to 0.

5. Final comments and remarks

I finally want to address a question similar to that of Theorem 1.2 for problem (1).

As said in the introduction, the torsion function of a convex set is (1/2)-concave, and

we can not say anything more in the general case, that is for every p > 1/2 there exist

a convex set whose torsion function is not p-concave (see [19]). On the other hand, the

solution of problem (1) when Ω is a ball (say Ω = B(0, R)) is easily calculated as

uB(x) =
R2 − |x|2

2n

and we can see that uB is concave, which is much more than (1/2)-concave. More generally,

the same happens for every ellipsoid E = {x ∈ Rn :
∑n

i=1 ai(xi − x̄i)
2 < R2}, with

x̄ = (x̄1, . . . , x̄n) a point in Rn, ai > 0 for i = 1, . . . , n,
∑n

i=1 ai = n, whose torsion

function is

uE(x) =
R2 −

∑n
i=1 ai(xi − x̄i)2

2n
,

Then we can wonder whether the concavity of the torsion function characterizes ellip-

soids or not. But this is easily seen to be false: there are many other domains whose

torsion function is concave, for instance smooth perturbations of ellipsoids, since uE is

uniformly concave.
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However, a deep inspection of the concavity of uE reveals that we can say more about

it and the following property holds:

the function vE =

√
R2

2n
− uE is convex .

And the above property is sharp, since

vE(x) =

√√√√ 1

2n

n∑
i=1

ai(xi − x̄i)2 ,

whose graph is a convex cone with vertex at (x̄, 0) .

Then we introduce the following definition.

Definition 5.1. Let Ω be a bounded convex domain in Rn. We say that a function

u ∈ C(Ω) satisfies the property (A) if

(A) w(x) =
√
M − u(x) is a convex function ,

where M = maxΩ u.

It is easily seen that property (A) implies the concavity of u (which in turn implies its

(1/2)-concavity).

Then it is natural to formulate the following conjecture.

Conjecture. The torsion function of a convex domain Ω satisfies the property (A) if

and only if Ω is an ellipsoid.

The conjecture has been very recently proved to be true in [16]. The proof is based on

a completely different technique from the one used here for the Newtonian potential.

Proposition 5.1. [16, Theorem 1.4] Let Ω be a bounded open set and let u ∈ C2(Ω)∩C(Ω)

be the solution to (1). If u satisfies property (A), then Ω is an ellipsoid and u = uE.

A similar conjecture can be obviously formulated for problem (2), as Lindqvist first did

in [21]. Precisely, once defined

Λ(Ω) = sup{β ∈ R : u1 is β-concave} ,

where u1 is the first positive Dirichlet eingenfunction of the Laplacian in Ω, Lindqvist

asks which convex domains maximize Λ and he conjectures the answer is the ball, also
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showing some evidences to support the conjecture (he in fact consider more in general

the first eigenfunction of the p-laplacian). This question is still open, to my knowledge.

But the situation in this case is probably more intricate and power concavity may be

not enough to characterize eigenfunctions of a ball: there should be a suitable concavity

property which plays in this case the same role that property (A) plays for the torsional

rigidity.

Let me finally notice that Theorem 1.2, Theorem 1.3 and Proposition 5.1, as well as the

conjecture of Lindqvist, can be regarded as (unconventional) overdetermined problems.

In general, an overdetermined problem is a Dirichlet problem coupled with some extra

condition. The archetypal one is the following Serrin problem:

(23)


∆u = −1 in Ω ,

u = 0 on ∂Ω ,

|∇u| = constant on ∂Ω .

In a seminal paper [28], Serrin proved that a solution to (23) exists if and only if Ω is a ball.

Since then, the literature about overdetermined problems has been continuously growing,

but usually the extra condition imposed to the involved Dirichlet problem regards the

normal derivative of the solution on the boundary of the domain, like in (23), and the

solution is given by the ball. Recently different conditions have been considered, like for

instance in [6, 7, 8, 11, 12, 22, 23, 29, 30]. Theorem 1.2, Theorem 1.3 and Proposition 5.1

can be included in this framework when the overdetermination is given by the convexity

of u2/(2−n), by the existence of two homothetic level sets and by property (A) respectively.

In connection with Proposition 5.1, let me also recall that overdetermined problems where

the solution is affine invariant and it is given by ellipsoids are considered in [4, 13, 17].
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