
ON REAL BOUNDED AND REGULAR (n− k, k)–LINE KP SOLITONS
SUI SOLITONI KP REALI LIMITATI E REGOLARI A (n− k, k) LINEE

SIMONETTA ABENDA

Abstract. After reviewing some of the recent results by S. Chakravarty and Y. Kodama

and by Y. Kodama and L. Williams concerning the characterization of the asymptotic

behavior of real regular and bounded multi–line soliton solutions to the KP-II equation,

we introduce the finite–gap approach to the inverse spectral problem for this family of

solutions.

Sunto. Dopo aver esposto alcuni risultati recenti di S. Chakravarty and Y. Kodama

e di Y. Kodama and L. Williams riguardanti la caratterizzazione del comportamento asin-

totico della famiglia di soluzioni reali limitate e regolari a solitoni multi–linea dell’equazione

KP-II, introduciamo l’approccio di tipo finite–gap al problema spettrale inverso per

questa famiglia di soluzioni.
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1. Introduction

The KP equation[17]

(1) KP− II equation : (−4ut + 6uux + uxxx)x + 3uyy = 0,

is the first non–trivial flow of the KP integrable hierarchy [34]. Its regular (complex)

finite–gap solutions are classified via divisors on non–singular algebraic curves [20], [21]

and solutions associated to singular curves, such as solitons, rational solutions, etc., may

be obtained as limits from regular complex finite–gap ones [10].
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ISSN 2240-2829.

1



2 SIMONETTA ABENDA

Real regular bounded (n − k, k)-line KP solitons, where k < n are positive inte-

gers, are solutions to (1) parametrized by a finite set of phases κ1 < · · · < κn and

by points in [A] in the totally non–negative part of the Grassmannian, GrTNN(k, n) =

GL+
R(k)\MatTNN

R (k, n). The asymptotic behaviour of these solutions in the (x, y)–plane

for any fixed time t has been characterized in [6], [7], while the tropical limit of such

solutions for t→ ±∞ has been related to the combinatorial classification of GrTNN(k, n)

and to the cluster algebras of Fomin–Zelevinsky[12] in [19].

Real regular finite–gap KP-II solutions correspond to algebraic–geometric data on M–

curves: the genus g non–singular curve possesses an anti–holomorphic involution which

fixes the maximum number g+1 of ovals, i.e. it is an M–curve, and the divisor must satisfy

the conditions from [11]. An important question is the following: can all real regular KP

multisoliton solutions be obtained by degenerating real regular finite-gap KP solutions?

In our research project with P.G. Grinevich [3],[4] we provide a positive answer to the

above question for all real bounded regular multiline KP solitons.

Plan of the paper: In section 2 we define the Grassmannian, while in section 3

we introduce the representation of points in the totally non–negative Grassmannian via

certain weighted oriented graphs following [31]. In section 4 we define (n−k, k)–multiline

soliton solutions and recall some relevant connections between the asymptotic behavior

of such solutions in the (x, y) plane and the combinatorial classification of the totally

non–negative Grassmannian established in [7], [19]. Finally in section 5 we introduce the

spectral problem for this class of solutions in the Sato Grassmannian and in finite–gap

theory.

2. The real Grassmannian

In this section we informally introduce Schubert cell decomposition and Gelfand–

Serganova stratification for real Grassmannians. For more details see for instance [13].

Let k ≤ n and let MatR(k, n) be the set of real k× n matrices of maximal rank k. Let

GLR(k) be the group of real invertible k×k matrices. Then the real (k, n) Grassmannian

is Gr(k, n) = GLR(k)\MatR(k, n), that is points in Gr(k, n) are equivalence classes of

k × n matrices w.r.t. linear recombinations of the rows.
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Let A be a k× n matrix representing a point [A] ∈ Gr(k, n). For any k element subset

I = {1 ≤ j1 < · · · jk ≤ n} let ∆(j1,...,jk)(A) := det (AI) denote the maximal minor

formed by the j1, . . . , jk columns of A. If we left multiply A by an invertible matrix with

determinant c, then all minors are multiplied by c. Therefore the minors ∆(j1,...,jk)(A)

provide local projective coordinates in Gr(k, n), the so called Plücker coordinates and

satisfy the Grassmann–Plücker relations

∆(i1,...,ik) ·∆(j1,...,jk) =
k∑
l=1

∆(jl,i2...,ik)∆(j1,...,jl−1,il,jl+1,··· ,jk),

where ∆(i1,...,ik) = −|∆(i1,...,ik)| if there is an odd number of elementary transpositions

which puts the indeces i1, . . . , ik in increasing order.

Gr(k, n) is decomposed into a disjoint union of Schubert cells Ωλ indexed by partitions

λ ⊂ (n−k)k whose Young diagrams fit inside the k× (n−k) rectangle. To each partition

λ = (λ1, . . . , λk), n − k ≥ λ1 ≥ λ2 . . . ≥ λk ≥ 0, λj ∈ Z, there is associated a pivot set

I(λ) = {1 ≤ i1 < · · · < ik ≤ n} defined by the following relations:

(2) ij = n− k + j − λj, j ∈ [k].

In the representation of points in Gr(k, n) as non–degenerate k× n matrices modulo row

operations, each Schubert cell is the union of all Grassmannian points sharing the same

set of pivot columns I, that is [A] ∈ Ωλ(I) if and only if I is the lexicographically minimal

k–subset of [n] (base) such that ∆I(A) 6= 0. Indeed, using Gaussian elimination, any

k × n matrix representing a given point in Ωλ with pivot set I can be transformed by

row operations to the canonical (RREF) echelon form, i.e. a matrix A such that Aiil = 1

for l ∈ [k] and all the entries to the left of these 1’s are zero. We may also represent

graphically the Schubert cell Ωλ with a Young diagram, which is a collection of boxes

arranged in k rows, aligned on the left such that the j-th row contains λj boxes, j ∈ [k].

The pivot set I = I(λ) is given by the k vertical steps in the path along the SE boundary

of the Young diagram proceeding from the NE vertex to the SW vertex of the k× (n− k)

bound box. Ī = [n]\I is the non–pivot set. Then the box Bij corresponds to the pivot

element i ∈ I and the non–pivot element j ∈ Ī (see Figure 1 for an example).



4 SIMONETTA ABENDA

n-k=5

k=3

1

23
4

5
6

78

𝐵47

𝑖1=1    λ1=5
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𝑖2=4    λ2=3

Figure 1. The Young diagram associated to the partition (5, 3, 2), k = 3, n = 8.

The reduced row echelelon form (RREF) representative matrix for the example in Figure

1 is then

A =


1 ∗ ∗ 0 ∗ 0 ∗ ∗

0 0 0 1 ∗ 0 ∗ ∗

0 0 0 0 0 1 ∗ ∗


The entries of the RREF matrix provide local affine coordinates for each Schubert cell.

Moreover, if we remove all pivot columns and we reflect the result w.r.t the vertical axis

we obtain the Young diagram. Therefore the dimension of the Schubert cell Ωλ is simply

the number of boxes of its Young diagram: dim (Ωλ) =
∑k

i=1 λi.

A refinement of this decomposition was proposed in [14], [15]. We recall that a matroid

of rank k on the set [n] is a nonempty collection M of k-element subsets in [n] (bases),

that satisfies the exchange axiom: for any I, J ∈M and for any i ∈ I there exists a j ∈ J

such that (I\{i}) ∪ {j} ∈ M.

If we index each Plücker coordinate by a base, then each point [A] ∈ Gr(k, n) is

associated to a matroid M[A] whose bases are the k-subsets I such that ∆I(A) 6= 0. The

exchange axiom is automatically verified thanks to Grassmann–Plücker relations.

Then the refined decomposition of Gr(k, n) into matroid strata[14] is defined by the fol-

lowing rule: each stratum SM ⊂ Gr(k, n) is composed by the points of the Grassmannian

which share the same set of non-zero Plücker coordinates:

SM = {[A] ∈ Gr(k, n) : ∆I(A) 6= 0 ⇐⇒ I ∈M}

A matroid M is called realizable if SM 6= ∅. The set of the pivot indeces is the lexico-

graphically minimal base of the matroid M.
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3. The totally non–negative Grassmannian

In this section we give a brief and incomplete introduction to the totally non–negative

Grassmannian following [31], see also [24] for an alternative approach.

Definition 3.1. [31]The totally non–negative part of Gr(k, n). The totally non–

negative Grassmannian GrTNN(k, n) is the subset of the Grassmannian Gr(k, n) with

all Plücker coordinates non-negative, i.e. it may be defined as the following quotient:

GrTNN(k, n) = GL+
k \ MatTNN

kn . Here GL+
k is the group of k× k matrices with positive de-

terminant, and MatTNN
kn is the set of real k×n matrices A of rank k such that all maximal

minors are non-negative, i.e. ∆I(A) ≥ 0, for all k–element subsets I ⊂ [n] = {1, . . . , n}.

The totally positive Grassmannian GrTP(k, n) ⊂ GrTNN(k, n) is the subset of Gr(k, n)

whose elements may be represented by k × n matrices with all strictly positive maximal

minors ∆I(A).

In [31], Postnikov studies the stratification for GrTNN(k, n) analogous to [14].

Definition 3.2. [31]Positroid cell. The totally nonnegative Grassmann (positroid) cell

STNN
M is the intersection of the matroid stratum SM with the totally nonnegative Grass-

mannian GrTNN(k, n):

STNN
M = {GL+

k · A ∈ Gr
TNN(k, n) : ∆I(A) > 0 if I ∈M, and ∆I(A) = 0 if I 6∈ M}.

The matroid M is totally nonnegative if the matroid stratum STNN
M 6= ∅.

Example 3.1. GrTP(k, n) is the top dimensional cell and corresponds to the complete

matroid M =
(
[n]
k

)
.

In [31] the author introduces many combinatorial objects, like decorated permutations,

plabic graphs, necklaces, etc., to represent and characterize positroid cells. In particular,

Postnikov introduces the Le–diagrams to represent totally non–negative Grassmann cells.

Definition 3.3. [31]Le–diagram and Le–tableau. For a partition λ, a Le–diagram

D of shape λ is a filling of the boxes of the Young diagram of shape λ with 0’s and 1’s

such that, for any three boxes indexed (i, k), (l, j), (l, k), where i < l and j < k, filled
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Figure 2. The Le–rule: a, c 6= 0 imply b 6= 0.

correspondingly with a, b, c, if a, c 6= 0, then b 6= 0 (see Figure 2). For such a diagram

denote by |D| the number of boxes of D filled with 1s.

A Le–diagram is called irreducible if each column and each row contains at least a 1.

The Le–tableau T is obtained from a Le–diagram D of shape λ, by replacing all 1s in

D by positive numbers wij (weights).

An example of Le–tableau is presented in Figure 3. The corresponding Le–diagram is

reducible because the column 3 contains only 0s.

Theorem 3.1. [31] There is a one-to one correspondence between totally non–negative

Grassmann cells and Le–diagrams. Moreover, the Le–tableau weights provide a parametriza-

tion of any such cell with a minimal number of positive coordinates.

The explicit relation between totally non–negative Grassmann cells and Le–diagrams

may be understood by the representation of the latter by Le–graphs. A Le–graph is

a planar directed graph G with a finite number of vertices and edges (see [31] for the

definition). A Le–graph (respectively a Le–network) in the disk is associated to any a

given Le–diagram (respectively Le–tableau) in the following way. The boundary of the

Young diagram of λ gives the lattice path of length n from the upper right corner to the

lower left corner of the rectangle k× (n− k). Place a vertex in the middle of each step in

the lattice path and mark the vertices by b1, . . . , bn proceeding NE to SW. The vertices bi,

i ∈ I ≡ I(λ) corresponding to vertical steps are the boundary sources of the network and

the remaining vertices bj, j ∈ Ī, corresponding to horizontal steps are the boundary sinks.

Then connect the upper right corner to the lower left corner by another path to obtain a
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Figure 3. A Le–tableau [left] and its Le–network [right].

simple close curve containing the Young diagram. For each box of the Le–diagram (i, j)

filled by 1, draw an internal vertex Vij in the middle of the box, the vertical line which

goes downwards from Vij to the boundary sink and the horizontal line which goes to the

right from Vij to the boundary source. By the Le–property any intersection of such lines

is also a vertex. All horizontal edges are oriented from right to the left while the vertical

edges are oriented downwards. Finally the Le-network from a Le–tableaux of shape λ is

simply obtained assigning the weight wij > 0 from the box Bij to the horizontal edge

e which enters Vij, and unit weights we = 1 to all vertical edges. The correspondence

between the Le–tableau and the Le-network is illustrated in Figure 3.

The map T 7→ NT gives an isomorphism between the set of Le–tableaux T with fixed

Le-diagram D and the set of Le-networks (modulo gauge transformations) with fixed

graph G corresponding to the diagram D as above.

Definition 3.4. [31]Boundary measurement map. For each Le–diagram D fitted in

a k×(n−k) rectangle, define the boundary measurement map MeasD : T 7→ GrTNN(k, n)

as follows: ∆J(MeasD(T )) =
∑

A∈AJ (NT ) w(A), where

(1) J is any k-element subset of [n];

(2) NT is the Le–network corresponding to the Le–tableau T and the boundary source

set is labeled by I;

(3) PJ(NT ) is the collection of non–intersecting directed path families P = {Pi}i∈I in

NT from the boundary sources I to the boundary destinations J . For any i ∈ I ∩J

the only path to the destination i is path without edges from i to itself, equipped

with the weight 1.
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(4) w(P ) =
∏

i∈I w(Pi);

(5) the weight of a path Pi in the family P is the product of the weights we of the edges

e ∈ Pi: w(Ai) =
∏

e∈Ai
we.

Theorem 3.2. (Theorem 6.5 [31]) For each Le–diagram as in Definition 3.4 the map

MeasD is a well-defined map to the Grassmannian, i.e. the collection ∆J(MeasD(T ))

satisfy Plücker relations, moreover it is a subtraction–free parametrization of a certain to-

tally nonnegative Grassmann cell STNN
M = MeasD(R|D|>0 ) ⊂ GrTNN(k, n). The Le–diagram

has shape λ if and only if STNN
M ⊂ Ωλ. The dimension of STNN

M is |D|. Finally, for D of

shape λ the map MeasD is I–polynomial, with I = I(λ).

Given a Le–tableau T with pivot set I it is possible to reconstruct both the matroid

and the representing matrix in RREF using the Lindström lemma.

Proposition 3.1. [31] Let Nt be the Le–network representing the Le–diagram D and let

I be the pivot set. For any k–elements subset J ⊂ [n], let K = I\J and L = J\I.

Then the maximal minor ∆J(A) of the RREF matrix A = A(N) is given by the following

subtraction–free polynomial expression in the edge weights we:

∆J(A) =
∑
Q

r∏
i=1

w(Qi),

where the sum is over all non–crossing collections Q = (Q1, . . . , Qr) of paths joining the

boundary vertices bi, i ∈ K with boundary vertices bj, j ∈ L.

Let ir ∈ I, where r ∈ [k] and j ∈ [n]. Then the element Arj of the matrix A is

(3) Arj =


0 j < ir,

1 j = ir,

(−1)σirj
∑

P :ir 7→j

(∏
e∈P

we

)
j > ir,

where the sum is over all paths P from the boundary source bir to the boundary sink bj,

j ∈ Ī, and σirj is the number of pivot elements is ∈ I such that ir < is < j.

Finally, it is possible to select |D| positive minors and express all minors of A as a

subtraction free rational expression of such basic minors (see also [33] for the explicit

construction of one such basis).
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Figure 4. The computation of the matrix entry A1
8 of the RREF [left] and of

the minor ∆(4,7,8)(A) [right].

Example 3.2. Let us consider the Le–diagram D and Le–network as in Figure 3: the pivot

set is I = {1, 4, 6}. The Le–network has 7 non zero entries, it satisfies the Le–property

and represents a totally non–negative cell of dimension 7.

Let A be the RREF matrix representing such point in GrTNN(3, 8). In Figure 4[left], we

explain the computation of the matrix entry A1
8: it is computed summing the contribution

of all weighted directed red paths from the boundary source b1 to the boundary edge b8. The

sign of such entry is + because one passes two boundary sources - i.e. two pivot columns

in the matrix A - to reach the destination b8.

The minor ∆(4,7,8)(A) is computed taking all families of non–intersecting paths from the

pivot set I = {1, 4, 6} to the destination set J = {4, 7, 8} (Figure 4[right]): there exists

only one such family of non intersecting paths which is evidenced in red.

Finally, it is easy to check that the matrix in reduced row echelon form is

A =


1 w12 0 0 −w15 0 w12w15w47 w12w15(w18 + w47w68)

0 0 0 1 w45 0 −w45w47 −w45w47w68

0 0 0 0 0 1 w67 w67w78

 .

The boundary measurement is invariant under the following gauge transformation of

the weights we [31]: pick a collection of positive real numbers tv, for any internal vertex

v ∈ N and assume that tb = 1 for each boundary vertex b. Let N ′ be the network with
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Figure 5. The transformation to a bicolored network at four–valent vertices.

the same directed graph as N and weights w′e = wetut
−1
v for each directed edge e = (u, v).

Then N ′ has the same boundary measurement as the network N .

A change of the orientation in N corresponds to a well defined exchange of boundary

sources with boundary sinks. If the change of orientation does not effect the orientation of

an edge, then that edge keeps the same weight in both orientations, otherwise the weights

are reciprocal to each other. Any change of orientation of N corresponds to a change of

base in the matroid M and leaves the boundary measurement map invariant (see [31]).

Any positroid cell is encoded by a decorated permutation [31]. The rule to identify the

permutation using the Le–diagram D is explained in [19]: replace each 1 with an elbow

and each 0 with a cross; then travel along each pipe from SE to NW and label the end

point with the same index as its origin. Finally define the permutation πD as follows: if

i labels a SE horizontal/vertical boundary edge of D then πD(i) labels the NW opposite

horizontal/vertical boundary edge of D.

The decorated permutation may be also computed directly from the Le–graph after

transforming it to a planar bicolored perfect graph. The rule [31] to transform a four–

valent internal vertex into a couple of trivalent black and white vertices is illustrated in

Figure 5. The white (respectively black) color is assigned to any internal vertex with

one incoming edge (respectively one outgoing edge). Boundary vertices have degree one.

Finally one adds internal vertices of degree 2 of convenient color so that each internal

edge joins vertices of opposite color.

A planar bicolored network is perfectly orientable if it is possible to assign an orienta-

tion to it which respects the coloring rule at the internal vertices. Moreover two planar

bicolored perfectly orientable networks in the disk are equivalent if they may be trans-

formed one into the other via a sequence of allowed moves and reductions and equivalent

networks share the same boundary measurement [31]. The following criterion allows to
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Figure 6. The trip rules at black and white vertices.

classify equivalent networks: two reduced networks with the same number of boundary

vertices may be transformed one into the other using Postnikov moves if and only if

they share the same decorated permutation [31]. Such permutation πN is associated to a

given reduced network N independently of its orientation using the trip rule at vertices

illustrated in Figure 6.

The following proposition relates the decorated permutations introduced above.

Proposition 3.2. [19] πD = π−1N .

We compute πD and πN for example 3.2 in Figure 7. In the next section we explain the

relation of πD with the classification of the asymptotic behavior of multi–line KP solitons

[19].

4. KP multi–line soliton solutions

In this section we introduce KP multi–line soliton solutions and explain some of their

relevant properties following [7] and [19].

Let us fix the following set of data: n phases κ1 < · · · < κn and a k × n real matrix

A ∈MatR(k, n) and let us denote its elements Aij with i ∈ [k], j ∈ [n]. Let

(4) f (i)(x, y, t) =
n∑
j=1

AijEj(x, y, t), i ∈ [k], Ej(x, y, t) = exp(κjx+ κ2jy + κ3j t),

be a finite set of solutions to the heat hierarchy ∂yf = ∂2xf , ∂tf = ∂3xf . Let us define

(5)

τ(x, y, t) = Wrx(f
(1), . . . , f (k))

=
∑

1≤j1<···<jk≤n

∆(j1,...,jk)(A)
∏

1≤r<s≤k

(κjs − κjr)
k∏
l=1

Ejl(x, y, t),
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Figure 7. We compute the permutations πD and πN for Example 3.2.

where ∆(j1,...,jk)(A) denotes the minor of A formed by the ordered columns j1 < · · · < js.

Then

(6) u(x, y, t) = 2∂2x log(τ(x, y, t))

is a solution to (1) [26].

Let us remark that we get the same solution if we linearly recombine the rows of A, that

is such KP solutions are parametrized by points [A] in the real Grassmannian Gr(k, n).

Comparing (5) and (6), we easily conclude that u(x, y, t) is regular and uniformly

bounded for all real (x, y, t) if all Plücker coordinates are non–negative, i.e. if [A] is a point

of the totally non–negative Grassmannian GrTNN(k, n). In [18], the authors prove the

untrivial statement that u(x, y, t) is bounded for all real (x, y, t) only if [A] ∈ GrTNN(k, n).

It is not restrictive to suppose that [A] belongs to an irreducible totally non–negative

cell. Indeed, using Proposition 3.1, it is easy to check that a zero column in the Le-

diagram corresponds to a zero column in the RREF matrix A, i.e. the corresponding

phase is absent in the solution u, while a zero row in the Le-diagram corresponds to a

row in A containing only the pivot term, so that again the corresponding phase plays no

role in the solution u.

The simplest example of solution in this class of regular bounded solitons is the one–

soliton solution parametrized by the soliton data K = {κ1 < κ2} and [(1, a)] ∈ GrTP(1, 2).
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x

y 𝑽[𝟏,𝟐]

[1,2]

E(2)

E(1)

Figure 8. In the (x, y)–plane the one–soliton solution u takes its maximum

value A[1,2] along the blue line (7) and as time increases the blue line moves in

the direction ~V[1,2]. In the regions E(1) and E(2) u is approximately zero.

Let f(x, y, t) = E1(x, y, t) + aE2(x, y, t). Then the KP one soliton solution

u[1,2](x, y, t) =
(κ2 − κ1)2

2 cosh2
(
1
2
(κ2 − κ1)[x+ (κ1 + κ2)y + (κ21 + κ1κ2 + κ22)t] + 1

2
log(a)

) ,
for each fixed time t = t0, has its peak along the line

(7) x+ (κ1 + κ2)y = − log(a)

κ2 − κ1
− (κ21 + κ1κ2 + κ22)t0,

that is u may be considered a one–line soliton solution. In particular the direction of the

line along which the peak occurs does not depend on time t0. For any fixed time t0, such

line marks the boundary between the region in the (x, y) plane where the exponential

E1 dominates in f from the one where E2 does. In each such region the KP solution

u(x, y, t0) is approximately zero.

The amplitude A[1,2], the wave vector ~K[1,2] and the frequency O[1,2] respectively are

A[1,2] =
1

2
(κ2 − κ1)2, ~K[1,2] =

(
1

2
(κ2 − κ1),

1

2
(κ22 − κ21)

)
, O[1,2] =

1

2
(κ32 − κ31).

The soliton velocity vector ~V[1,2] is defined by ≺ ~V[1,2], ~K[1,2] �= −O[1,2], that is

~V[1,2] = −κ
2
2 + κ1κ2 + κ21

1 + (κ2 + κ1)2
(−1,−(κ1 + κ2)).

In particular the x–component of the velocity vector is always negative, that is the line

soliton propagates in the negative x–direction. In Figure 8 we show the graph of one such

solution.

The first untrivial multi–line soliton solution is the so–called Miles resonance [28].

Let K = {κ1 < κ2 < κ3}, [(1, a2, a3)] ∈ GrTP(1, 3) and let f(x, y, t) = E1(x, y, t) +

a2E2(x, y, t) + a3E3(x, y, t). Then, in the plane (x, y), with t fixed, the phases κ1, κ2, κ3,
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x

y

[1,3]

E(3)

E(1)

E(2)
[2,3]

[1,2]

Figure 9. In the (x, y)–plane the (2,1)–soliton solution behaves approximately

as a one–soliton solution along each blue semiline.

respectively dominate for x → −∞, −(κ1 + κ2)y < x < −(κ2 + κ3)y and x → +∞ and

we label E[i], i ∈ [3], each such region (see Figure 9). The KP solution u = 2∂2x log(f)

is approximately zero in each region E[i], i ∈ [3], and a direct computation shows that,

along the semi-line which marks the boundary of the regions E[i] and [E[j],

u(x, y, t) ≈ u[i,j](x, y, t),

since, along the line x+ (κi + κj)y = const., the τ–function f ≈ aiEi + ajEj.

The three semi–lines meet at a common point (junction vertex) marked by the resonance

conditions

(8) ~K[1,3] = ~K[1,2] + ~K[2,3], O[1,3] = O[1,2] + O[2,3].

In a remarkable series of papers (see [6], [7], [19] and references therein), the authors

have succeeded is classifying the asymptotic behavior of soliton data (K, [A]), for generic

phases K = {κ1 < · · · < κn} and points [A] in the irreducible part of the totally non–

negative Grassmannian. Let us summarize the relevant properties of these solutions.

For any fixed time, the plot of the (n − k, k)–line soliton solution in the (x, y)–plane,

looks like a connected graph with n semilines and finitely many line segments. The

complement of such graph consists of finitely many regions each one characterized by

a dominant esponential term in the τ function encoded by a base {i1, . . . , ik} in the

matroid M. Therefore in each such region the solution u is approximately zero. Each

line segment or semiline marks the boundary of two adjacent regions and the indeces of

the dominant exponentials in the τ–function in adjacent regions are two bases of the form
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{i,m2, . . . ,mk} and {j,m2, . . . ,mk} [7]. Therefore, along such segment or semiline, the

solution is approximately a well–defined one–line soliton solution of type [i, j].

In particular, the asymptotic behavior of the multi–line soliton solutions in the (x, y)

plane at fixed time t is combinatorially classified using the permutation πD introduced in

the previous section, under certain technical assumptions on the phases (see [19] for the

precise conditions).

Theorem 4.1. [7], [19] Let I = {i1 < · · · < ik} and Ī = {j1 < · · · < jn−k} respectively

be the lexicographically minimal base (pivot set) and its complement in [n] for [A]. Let

πD be the permutation of its Le–diagram. Then, the KP solution (6) has the following

properties

(1) In the unbounded region containing the semiaxis y = 0,x << 0, the dominant

exponential of the τ–function corresponds to the base I;

(2) There are k asymptotic line–solitons as y → +∞, each defined uniquely by the

line [il, πD(il)]. From left to right these solitons are listed in decreasing order of

the quantity κil + κπ(il);

(3) There are (n − k) asymptotic line–solitons as y → −∞, each defined uniquely by

the line [js, πD(js)]. From left to right these solitons are listed in increasing order

of the quantity κjs + κπ(js).

The vertex at which line–solitons meet is generically trivalent and corresponds to a

resonant interaction where the balancing condition (8) holds. In [35] there is a vertex

dynamics interpretation of this behavior: the solution with one junction vertex may be

mapped to its vertex and emulates a free spatially extended particle. Generic solutions

show a finite number of junctions each mapped to a vertex. As time t evolves, these

vertices move in the (x, y)–plane, collide and then split up. Such collisions may be either

elastic or inelastic (see [35] for a partial classification).

The asymptotic behavior in the tropical limit (t → ±∞) is thoroughly analyzed in

[19]: multi–soliton solutions organize in asymptotic soliton webs formed by line–solitons

and soliton junctions which can be described in terms of plane arrangements and cluster

algebras naturally associated to the combinatorial classifications of GrTNN(k, n). The
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reconstruction of soliton data from asymptotic web contour has been analyzed in [9] in

the case GrTP(1, n) and in [19] in the case GrTP(k, n).

5. The spectral approach to real bounded regular multiline KP solitons

Let us recall the construction of the wave function for the KP multi–line soliton solu-

tions. For a general introduction to integrable hierarchies and soliton theory see [8] or

[10]. The KP–II equation is part of an integrable hierarchy [34]. In the following we use

the following notation ~t = (t1, t2, t3, t4, . . . ) where t1 = x, t2 = y and t3 = t.

According to Sato theory [32] all KP soliton solutions may be obtained from the dress-

ing (inverse gauge) transformation of the vacuum eigenfunction Ψ(0)(ζ,~t) = exp(θ(ζ,~t)),

which solves

∂xΨ
(0)(ζ,~t) = ζΨ(0)(ζ,~t), ∂tlΨ

(0)(ζ,~t) = ζ lΨ(0)(ζ,~t), l ≥ 2,

via the dressing (i.e. gauge) operator

W (~t) = 1−
∞∑
j=1

χj(~t)∂
−N
x ,

under the condition that W satisfies Sato equations

∂tnW = BnW −W∂nx , n ≥ 1,

where Bn = (W∂nxW
−1)+ is the differential part of the operator W∂nxW

−1. Then

L = W∂xW
−1 = ∂x +

u(~t)

2
∂−1x + · · · , u(~t) = 2∂xχ1(~t), Ψ̂(0)(ζ;~t) = WΨ(0)(ζ;~t)

are respectively the KP-Lax operator, the KP–potential (KP solution) and the KP-

eigenfunction, i.e.

LΨ̂(0)(ζ;~t) = ζΨ̂(0)(ζ;~t), ∂tlΨ̂
(0)(ζ;~t) = BlΨ̂

(0)(ζ;~t), l ≥ 2,

where Bl = (W∂lxW
−1)+ = (Ll)+.

The dressing transformation associated to the line solitons (6) corresponds to the fol-

lowing choice of the dressing operator

W = 1− w1(~t)∂
−1
x − · · · − wN(~t)∂−kx ,
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where w1(~t), . . . , wk(~t) are uniquely defined as solutions to the following linear system of

equations

(9) ∂kxf
(i) = w1∂

k−1
x f (i) + · · ·+ wkf

(i), i ∈ [k].

In such case, w1(~t) = ∂xτ/τ and u(~t) = 2∂xw1(~t) = 2∂2x log(τ). Moreover

(10) D(k) ≡ Bk = (Lk)+ = Lk = ∂kx − ∂k−1x w1(~t)− · · · − wk(~t),

and ∂tkW = 0.

We observe that w1, . . . , wk is the solution to the linear system (9) if and only if

(11) D(k)f (i) ≡ W∂kxf
(i) = 0, i ∈ [k].

Moreover, if the above identity holds, then

∂tl(D
(k)f (i)) = 0, ∀l ∈ N,

that is, by construction, the k-th order Darboux transformation D(k) is associated with

the k eigenfunctions f (1)(~t), . . . , f (k)(~t), of the KP Lax Pair with zero potential for the

infinite eigenvalue.

The KP-eigenfunction associated to this class of solutions is

Ψ̂(0)(ζ;~t) = WΨ(0)(ζ;~t) =
(
1− w1(~t)ζ

−1 − · · · − wk(~t)ζ−N
)
eθ(ζ,

~t),

or, equivalently,

(12)

D(k)Ψ(0)(ζ;~t) ≡ W∂kxΨ(0)(ζ;~t) =
(
ζk − ζk−1w1(~t)− · · · − wk(~t)

)
Ψ(0)(ζ;~t) = ζkΨ̂(0)(ζ;~t).

The general method to construct periodic and quasi–periodic solutions to the KP equa-

tion is due to Krichever [20, 21]: let Γ be a smooth algebraic curve of genus g with a

marked point P0 and let ζ−1 be a local parameter in Γ in a neighborhood of P0 such that

ζ−1(P0) = 0. The triple (Γ, P0, ζ
−1) defines a family of exact solutions to (1) parametrized

by degree g non-special divisors D defined on Γ\{P0}.

The finite gap solutions of (1) are constructed starting from the commutation repre-

sentation [34]

(13) [−∂y +B2,−∂t +B3] = 0,
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where

B2 ≡ (L2)+ = ∂2x + u, B3 = (L3)+ = ∂3x +
3

4
(u∂x + ∂xu) + ũ,

and ∂xũ = 3
4
∂yu. Then, the Baker-Akhiezer function Ψ̃(P,~t) meromorphic on Γ\{P0},

with poles at the points of the divisor D and essential singularity at P0 of the form

Ψ̃(ζ,~t) = eζx+ζ
2y+ζ3t+··· (1− χ1(~t)ζ

−1 − · · · − χN(~t)ζ−N − · · ·
)

is an eigenfunction of the following linear differential operators

∂yΨ̃ = B2Ψ̃, ∂tΨ̃ = B3Ψ̃,

and, in such case, imposing compatibility condition (13), u(~t) = 2∂xχ1(~t) satisfies the KP

equation.

The divisor of poles D does not depend on the times ~t. In contrast to it, the divisor of

zeroes D(~t) depends on all times. The Abel transform of D(~t) is a linear function of times

~t, therefore such transform linearizes the KP hierarchy. D is an effective divisor, therefore

Ψ(ζ,~0) ≡ 1, and at the point ~t = ~0 the divisor of zeroes coincides with the divisor of

poles, D(~0) = D.

After fixing a canonical basis of cycles a1, . . . , ag, b1, . . . , bg and a basis of normalized

holomorphic differentials ω1, . . . , ωg on Γ, that is
∮
aj
ωk = 2πiδjk,

∮
bj
ωk = Bkj, j, k ∈ [g],

the KP solution takes the form

(14) u(x, y, t) = 2∂2x log θ(xU (1) + yU (2) + tU (3) + z0) + c1,

where θ is the Riemann theta function and U (k), k ∈ [3], are vectors of the b–periods

of the normalized meromorphic differentials, holomorphic on Γ\{P0} and with principal

parts ω̂(k) = d(ζk) + . . . , k ∈ [3], at P0 (see [20, 11]).

The necessary and sufficient conditions for the smoothness and realness of the solu-

tion (14) associated with smooth curve Γ of genus g have been proven by Dubrovin and

Natanzon (see [11] and references therein): Γ must be an M–curve, that is it possesses an

antiholomorphic involution

σ : Γ→ Γ, σ2 = 1, σ(P0) = P0, σ∗(ζ) = ζ̄ ,
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Figure 10. Left: A degree 2 divisor on a regular M-curve of genus g = 2

satisfying the reality and regularity conditions in [11]. Right: In the solitonic

limit, the spectral curve is a reducible rational M–curve and the divisor may still

satisfy the reality and regularity conditions.

where ·̄ denotes complex conjugation, such that the set of fixed points of σ consists of

g + 1 ovals (the maximum number of ovals [16]), Ω0,Ω1, . . . ,Ωg. These ovals are called

“fixed” or “real”. The set of real ovals divides Γ into two connected components. Each

of these components is homeomorphic to a sphere with g + 1 holes.

On such smooth M–curve of genus g it is possible to fix a basis of cycles such that the

essential singularity P0 belongs to one oval Ω0 (which is called “infinite” oval), and the

remaining g fixed ovals Ωj, j ∈ [g] coincide with the aj-cycles of this basis:

σ(aj) = aj, σ(bj) = −bj, j ∈ [g].

We call the ovals Ωj, j ∈ [g] “finite”. Finally, in order to have regular real quasi–periodic

solutions it is necessary and sufficient that each finite oval contains exactly one pole divisor

point[11].

For instance, in Figure 10[left] the regular curve has genus 2, the involution is the

orthogonal reflection w.r.t. the blue plane and the ovals are green. The reality and reg-

ularity conditions from [11] impose that the essential singularity P0 of the wave–function

belongs to one such oval and that there is one simple pole Pi, i = 1, 2, in each of the

remaining ovals.

Soliton solutions of the KP–II equation correspond to algebraic-geometric data asso-

ciated to rational curves obtained by shrinking some cycles to double points ([22], see

also the book [10] and references therein). In the case of multi–line solitons, it is possible

to directly construct such data using the Darboux transformation (10) [25]: the wave
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function (12) is defined on a Riemann sphere denoted by Γ0, and, after normalization, its

effective divisor D(0) = {γl ; l ∈ [k]} ⊂ Γ0\{P0}, consists of real simple poles γl ∈ [κ1, κn]

such that

(15) (γl)
k − w1(~0)(γl)

k−1 − · · · − wk−1(~0)γl − wk(~0) = 0, l ∈ [k].

Therefore, the Darboux-Dressing in this finite–dimensional reduction of the Sato Grass-

mannian provides the following spectral data: a copy of CP1, Γ0, with a marked point P0,

n cusps κ1, . . . , κn, and a real k point divisor D(0) defined in (15).

Let us now fix K and let [A] vary in GrTP(k, n): we get an k(n−k)–dimensional family

of real bounded line–solitons. Since such multiline solitons may originate from regular

(complex) quasi–periodic finite–gap solutions in the solitonic limit, according to Krichever

theorem, we expect that they may be locally parametrized via k(n− k) point divisors on

some reducible curve Γ of which Γ0 is a rational component.

Moreover, the sufficient part of Dubrovin and Natanzon’s proof holds also when the

algebraic M-curve is singular. Since the multi-soliton solutions associated to points in

GrTNN(k, n) are real bounded regular for all ~t, it is natural to expect that they may be as-

sociated to algebraic-geometric data on reducible curves which are rational degenerations

of regular M–curves. For example, in Figure 10[right] we show the rational degeneration

of the smooth M–curve of Figure 10[left] and the limiting position of the divisor points is

in agreement with reality and regularity conditions in [11].

Therefore, in our approach, we consider Γ0 as a component of some unknown reducible

curve Γ and D(0) as the restriction to Γ0 of the Krichever divisor of degree k(n − k) on

Γ\{P0}. The main problems we are interested in are the following ones:

(1) Fix generic soliton data (K, [A]) where K = {κ1 < · · · < κn} and [A] is a point of

a positroid cell STNN
M ⊂ GrTNN(k, n) of dimension |D|. Then construct:

(a) A reducible real algebraic curve Γ which is the rational degeneration of a

smooth M–curve of genus g ≥ |D| and such that Γ0 is one of its components,

(b) Extend the KP wavefunction (12) to a meromorphic function on Γ\{P0},

in such a way that its effective divisor D satisfies the reality and regularity
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conditions of [11], that is P0 belongs to one oval and there is exactly one

divisor point in each other oval.

(2) Start from Γ, a given rational degeneration of an M–curve, and a Krichever divisor

on Γ\{P0} satisfying the reality and regularity conditions of [11], then reconstruct

the soliton solution, i.e. locally parametrize points [A] ∈ GrTNN(k, n) via real and

regular divisors on Γ\{P0}.

Problem (2) is an open untrivial question. Indeed in finite gap theory on smooth

irreducible algebraic curves, the effect of moving the divisor points results in a phase shift

of the solution u(x, y, t). On the contrary, in the present degenerate setting, moving the

divisor points in the ovals may correspond to an untrivial shift from one component to

another in the degenerate Jacobian. Any such shift corresponds to a different family of

soliton solutions: for instance one may pass from soliton data in GrTNN(k, n) to soliton

data in GrTNN(k′, n′) with (k′, n′) 6= (k, n) or even to the trivial KP solution u(x, y, t) ≡ 0.

At present, we [2] have been able to characterize an (n − 1)–parameter family of real

regular bounded (n − k, k)–line KP solitons in GrTP(k, n) parametrized by non–special

real divisors on a specific rational degeneration of a genus g = (n − 1) hyperelliptic M–

curve. These solutions are the so called T–hyperelliptic solitons [5] which are naturally

related to the finite Toda lattice [29]. In [1] we have shown that the curve Γ constructed

in [3] for soliton data in GrTP(1, n) and GrTP(n − 1, n) is a rational degeneration of a

genus g = (n−1) hyperelliptic M–curve. In [2] we use the parametrization by k–compatible

divisors of a special (n−1)–dimensional variety in GrTP(k, n), for any k ∈ [n−1], and show

the relation between the inverse spectral problem of the finite Toda lattice characterized

in [23] and the analog problem for T–hyperelliptic solitons.

For what concerns Problem (1), in [3], we have provided an explicit solution in the case

[A] ∈ GrTP(k, n) using classical positivity [30]: for any fixed soliton datum (K, [A]), we

construct a spectral curve Γ, which is the rational degeneration of an M-curve of lowest

possible genus g = k(n − k) and a unique KP effective divisor satisfying the reality and

regularity conditions.

In [4], we generalize the above result to any soliton datum [A] ∈ GrTNN(k, n) using

the representation of STNN
M ⊂ GrTNN(k, n) via networks in the disk proposed in [31]. In
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particular, if [A] belongs to a positroid cell of dimension |D|, we construct a reducible

curve Γ which is the rational degeneration of a smooth M curve of minimal genus g = |D|

and show that the effective divisor of degree d = |D| satisfies the reality and regularity

conditions following from [11]. In a future publication we plan to compare the asymptotic

behavior of the zero divisors points with the multi–line soliton asymptotics established in

[7], [9] and [19].

The procedure we use in both papers is constructive: we attach several copies of CP1

to Γ0 creating double points and the correct number of ovals, we then extend the vacuum

wavefunction Ψ(0) to the curve Γ keeping control of its value at all marked points so to

produce a vacuum divisor satisfying appropriate conditions, then, after normalization, the

dressed wavefunction satifies the reality and regularity conditions of [11].

Below we briefly illustrate such procedure in the simplest case where [A] = [a1 =

1, a2, a3] ∈ GrTP(1, 3). In such case, the curve Γ is the rational degeneration of a hy-

perelliptic curve of genus 2 (see [3]), with affine part {(ζ, µ) : µ2 =
∏3

j=1(ζ − κj)2 }. In

figure 11 we show the topological scheme Γ = Γ0 t Γ1 of such spectral curve. Let ρ be

the hyperelliptic involution and Q1 = ρ(P0). For simplicity we use the same symbol to

represent the point p ∈ Γ and its ζ coordinate.

Let us extend the vacuum wavefunction to Γ in such a way to create two simple poles

in Γ1

Ψ(ζ; t) =


Ψ(0)(ζ; t) ≡ eθ(ζ;t), if ζ ∈ Γ0,

Ψ(1)(ζ; t) ≡
3∑
j=1

ajEj(t)

∏
s 6=j(ζ − κs)

(ζ − b1)(ζ − b2)
, if ζ ∈ Γ1.

The vacuum divisor B = {b1 < b2} ⊂ Γ1, is uniquely identified imposing matching

conditions at the double points:

Ψ(0)(κj; t) = Ψ(1)(κj; t) = exp(θj(t)), j ∈ [3].

It is immediate to check that the vacuum divisor of poles satisfies bj ∈]κj, κj+1[, i.e. there

is exactly one divisor point in each oval. Moreover

(16) Ψ(1)(Q1; t) ≡ lim
ζ→+∞

Ψ(1)(ζ; t) = f (1)(t) =
3∑
j=1

ajEj(t).
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Figure 11. The curve Γ and a possible configuration of the vacuum divisor

[left] and of the KP divisor [right] for soliton data in GrTP(1, 3).

In figure 11[left] we show a vacuum divisor satisfying the above properties.

The Darboux transformation D(1) = ∂x−
∂xf

(1)(t)

f (1)(t)
applied to the vacuum wavefunction

Ψ, acts as a shift on the vacuum divisor of poles and zeroes, i.e. it generates a non–effective

KP divisor with divisor of poles {b1, b2, P0} and divisor of zeros {γ1(~t), γ2(~t), Q1}, where

γ1(~t) ∈ Γ0 is the Sato zero and γ2(~t) ∈ Γ1. Indeed

D(1)Ψ(ζ; t) =



D(1)Ψ(0)(ζ; t) ≡ (ζ − γ1(~t))eθ(ζ;t), if ζ ∈ Γ0,

D(1)Ψ(1)(ζ; t) ≡
3∑
j=1

ajκjEj(t)
∏

s 6=j(ζ − κs)
(ζ − b1)(ζ − b2)

=

=
a1a2(κ2 − κ1)2E1(~t)E2(~t)(ζ − κ3) + c.p.

(ζ − b1)(ζ − b2)
, if ζ ∈ Γ1.

The matching conditions at the double points are satisfied by construction and, moreover,

each of the divisor points γ1(~t), γ2(~t) belongs to a distinct finite oval for generic ~t (they

may collide at the double point κ2).

Let γi = γi(~0). Then the KP effective divisor {γ1, γ2} of the normalized dressed wave-

function

Ψ̃(ζ; t) =
DΨ(ζ; t)

DΨ(ζ; 0)
=


Ψ̃(0)(ζ; t) =

ζ − γ1(t)

ζ − γ1
eθ(ζ;t), if ζ ∈ Γ0,

Ψ̃(1)(ζ; t) =
A(~t)(ζ − γ2(~t))

ζ − γ2
, if ζ ∈ Γ1,

satisfies both Sato and Dubrovin–Natanzon constraints.
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