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Abstract. We investigate rigidity problems for a class of real hypersurfaces in C2 with

constant Levi curvature. We present a recent result obtained in [18] in collaboration

with V. Martino for the boundaries of starshaped circular domains.

Sunto. Si desiderano investigare problemi di rigidità e di caratterizzazione per una

classe di ipersuperfici reali di C2 con curvatura di Levi costante. Viene qui presentato

un recente risultato contenuto in [18], ottenuto in collaborazione con V. Martino, in cui

si considerano le ipersuperfici che delimitano domini circolari e stellati.
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1. Introduction

The Levi curvatures of a real hypersurface in Cn+1 can be defined as the elementary sym-

metric functions of the eigenvalues of the Levi form. They were introduced and studied in

[2, 7]. Since the Levi form involves a kind of restriction of the second fundamental form

to the holomorphic tangent space, such a restriction provides a lack of information and

hence a lack of ellipticity in the operator describing the curvatures. Nevertheless, under

suitable pseudo-convexity assumptions for the hypersurface, the direction of missing ellip-

ticity is recovered through bracket commutations (we refer the reader to [21]). Therefore,

such operators can be seen as non-linear degenerate-elliptic operators of sub-Riemannian

type. This very special feature has been successfully exploited in the literature, e.g. by

Citti-Lanconelli-Montanari in [6] where they were able to prove a regularity result for
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graphs in C2 with a prescribed smooth curvature.

Here we want to discuss symmetry/rigidity problems, and in particular an Aleksandrov

soap bubble-type problem such as the characterization of the spheres as the only closed

hypersurfaces with constant Levi curvatures. To this aim, the classical approaches by

Aleksandrov in [1] and by Reilly in [23] seem not working so far. Let us briefly explain

the main reasons. The approach by Aleksandrov is the celebrated moving-plane method

and it is based, very roughly speaking, on comparisons between the given hypersurface

M and suitable reflected copies of M . Interior strong comparison results hold true for the

Levi curvatures by the results in [5, 21], whereas the boundary comparison principles are

more delicate and may fail (see [9, 17, 25]). In any case, the reflections with respect to

generic hyperplanes (which are the ones exploited in the classical moving-plane method)

do not preserve the complex structure, and the Levi curvature is not invariant through

them: this fact represents a strong impediment in running such method (however, in prin-

ciple, other kinds of reflections might work). On the other side, the approach by Reilly

is based on integral formulas. Concerning the Levi curvatures, integral representation

formulas were proved in [15], whereas an analogue of the needed Minkowski formula does

not hold in general (see for instance [20, 26, 19, 13]). There have bee recent developments

in [19, 8] for different kind of Minkowski type formulas adapted to the complex structure,

but it is not yet clear how to exploit them in a possible Reilly-type approach.

Despite of the various obstacles we have just described, in the literature some partial

answers to the Aleksandrov-type problem for the Levi curvature have been given in

[9, 10, 14, 24, 18] (see also [22, 16]). These results strongly rely on extra-assumptions

about a priori symmetries for the hypersurface. Among them, we would like to high-

light the result by Hounie and Lanconelli in [9]. They proved that the balls are the only

bounded Reinhardt domains in C2 whose boundary has constant Levi curvature. An open

subset Ω of C2 is called a Reinhardt domain (with center at the origin) if

(z1, z2) ∈ Ω =⇒ (eiθ1z1, e
iθ2z2) ∈ Ω ∀ θ1, θ2 ∈ R.

Due to this symmetry, a Reinhardt domain Ω ⊂ C2 can be naturally described with a

domain in R2, and ∂Ω as a curve in R2. The fact of having constant Levi curvature
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gives rise to an ODE for the function parametrizing such curve. This is what Hounie and

Lanconelli considered in [9]. To be more precise, by writing locally the defining function

f(z1, z2) as F (|z2|2)− |z1|2, they showed that F has to be solution of the ODE

sFF ′′ = sF ′2 − L(F + sF ′2)3/2 − FF ′.

They proved a uniqueness result for the solutions to this degenerate second order ODE

starting at s = 0, which lead to their Aleksandrov-type theorem.

The purpose of this note is to present a true extension of Hounie-Lanconelli’s theorem

which has been obtained together with V. Martino in [18] with completely different tech-

niques. To this aim, we have to recall the following definition

Definition 1.1. An open set Ω ⊂ C2 is said to be circular (with center at the origin) if

(z1, z2) ∈ Ω =⇒ (eiθz1, e
iθz2) ∈ Ω ∀ θ ∈ R.

Circular domains were studied by Carathéodory in [3] and by Cartan in [4] for the

issues regarding the analytic representation (see also [12]). It is clear from the definition

that Reinhardt domains, enjoying one more symmetry, form a special subclass of the

class of circular domains. A defining function of a circular domain can be written in fact

as a function of three real independent variables, and therefore ODE techniques are not

allowed to treat the boundary of such domains. For our Aleksandrov-type result we are

actually going to consider the class of domains which are circular and starshaped (with

respect to the same point). It is interesting to notice that Cartan studied the role of the

circular starshaped domains (cerclé étoilé in his terminology in [4]) and he proved, among

other results, that holomorphic functions in a circular domain extend holomorphically to

the smallest circular starshaped domain containing the initial domain.

The main consequence of our results in [18] is then the following

Theorem 1.1. Let Ω be a circular starshaped bounded open subset of C2. Suppose ∂Ω is

a smooth hypersurface with constant Levi curvature. Then Ω is a ball.

We remark that a compact hypersurface with no boundary is forced to have positive

Levi curvature at some point. Hence, if the Levi curvature is constant, it has to be a
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positive constant. In [18, Lemma 4.1] it is showed that a bounded Reinhardt domain

of C2 whose boundary has positive Levi curvature must be starshaped with respect to

the origin. That is why we can recover the result by Hounie and Lanconelli in [9] from

Theorem 1.1.

The complete proof of Theorem 1.1 can be found in [18], where the circular assumption

for Ω is seen as a particular case of a more general geometric condition. In this note we

just present the main steps of the approach we adopted, which is a PDE-approach inspired

by an old proof by Jellett in [11]. We are going to introduce a Hörmander operator L

on the hypersurface which is a first order horizontal perturbation of ‘the’ sub-Laplacian,

and we are going to exploit the strong maximum principle for L after the choice of a

Jellet-type function. In Section 2 we recall the proof by Jellett and we see the difficulties

in trying to transfer such a proof to our situation. The starshapedness assumption, which

already appears in the classical Jellett’s theorem, finds here the main justification. In

Section 3 we stress the role of the circular assumption to get a crucial pointwise identity,

and we conclude by obtaining a horizontal umbilicality condition for the hypersurface.

2. The Jellett approach

Let us say that a smooth orientable hypersurface in Rn+1 is starshaped if it is a boundary

of a bounded domain which is strictly starshaped. In 1853, i.e. one century before the

complete characterization by Aleksandrov, Jellett proved in [11] that

any starshaped hypersurface in Rn+1 with constant mean curvature is a sphere.

To be precise, Jellett proved his theorem for two-dimensional surfaces in R3, but the same

arguments work in any dimension. Let us sketch here such a proof.

Let Σ be a smooth orientable hypersurface in Rn+1, with n ≥ 1. Suppose that Σ ⊂ Rn+1

is starshaped with respect to the origin. Let ν be the unit outward normal to Σ, p ∈ Rn+1

be the position vector. Let us also denote respectively by ∆Σ and h the Laplace-Beltrami

operator on Σ and its second fundamental form. The mean curvature is then given by

H =
1

n
trace(h).
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If we assume H is constant, a straightforward computation and the use of Codazzi equa-

tions yield

∆Σ

(
H
|p|2

2
− 〈p, ν〉

)
= (‖h‖2 − nH2) 〈p, ν〉 .

Here we used the notation ‖ · ‖2 for the squared norm of a matrix, namely the sum of all

of its squared coefficients. The starshapedness assumption is saying that

〈p, ν〉 > 0 ∀ p ∈ Σ.

On the other hand, for any symmetric n× n matrix A, we recall that

(1) ‖A‖2 ≥ 1

n
(trace(A))2,

and the equality occurs if and only if the matrix A is a multiple of the identity. This is

saying that also ‖h‖2−nH2 ≥ 0. Therefore, the function H |p|
2

2
−〈p, ν〉 is ∆Σ-subharmonic,

and thus constant being Σ compact without boundary. In particular, since 〈p, ν〉 is strictly

positive, ‖h‖2 = nH2 = 1
n
(trace(h))2. The equality case in (1) says that Σ is umbilical.

Hence it has to be a sphere by classical arguments.

Let us try to apply the same approach in our setting in C2 for the case of constant

Levi curvature hypersurfaces. We first recall the needed notations. We identify C2 ' R4,

where the generic point (z1, z2) = (x1, y1, x2, y2). We fix a smooth connected orientable

hypersurface M , boundary of a bounded domain Ω. We put ν the unit outward normal to

M and we denote by ∇ the Levi-Civita connection related to the standard inner product

〈·, ·〉. The second fundamental form of M is the bilinear form on the tangent space TM

given by

h(·, ·) := 〈∇(·)ν, ·〉,

and H = trace(h)
3

is the mean curvature of M . In C2 we consider the standard complex

structure J for which J∂xj = ∂yj and J∂yj = −∂xj . It is compatible with 〈·, ·〉 and ∇ in

the following sense:

(2) 〈·, ·〉 = 〈J ·, J ·〉, J∇ = ∇J.

Thanks to J we can define the unit characteristic vector field X0 ∈ TM by X0 := −Jν.

The horizontal distribution or Levi distribution HM is the 2-dimensional subspace in TM
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which is invariant under the action of J :

HM = TM ∩ J TM,

that is a vector field X ∈ TM belongs to HM if and only if also JX ∈ HM . Then TM

splits in the orthogonal direct sum:

TM = HM ⊕ RX0.

We can thus consider an orthonormal frame for TM of the form E := {X0, X1, X2}, where

X1 ∈ HM is a unit vector field and X2 = JX1. We denote by

hjk = h(Xj, Xk), j, k = 0, 1, 2,

the coefficients of the second fundamental form with respect to E. In such a basis we

have

h =



h00 h01 h02

h01 h11 h12

h02 h12 h22


.

Let us also define the horizontal part of h

hH =


h11 h12

h12 h22

 .

A possible way to define the Levi curvature of M is as the normalized trace of hH , that is

L =
1

2
trace(hH) =

h11 + h22

2
.

In other words,

3H = 2L+ h00.

Having in mind the Jellett’s approach we need to consider a second order operator which

plays the role of the Laplace-Beltrami operator. For any smooth function u : M → R, we
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define the Hessian of u as follows

Hess(u)(X, Y ) = XY u− (∇M
X Y )u, ∀ X, Y ∈ TM,

where

∇M
X Y = ∇XY + h(X, Y )ν, ∀ X, Y ∈ TM.

Let us then consider the horizontal Hessian of u

HessH(u)(X, Y ) = XY u− (∇M
X Y )u, ∀ X, Y ∈ HM.

The Laplace-Beltrami operator ∆M acting on u can be seen either as the divergence of

the gradient of u or as the trace of the Hessian of u. In order to define a model subelliptic

operator such as ‘the subLaplacian’, it is worth to notice that the divergence of the

horizontal gradient of u and the trace of the horizontal Hessian of u do not coincide in

general. For this reason we might define two different operators. First, let us consider the

divergence form operator

∆div
H := ∆M −X0X0.

This is in divergence form since the characteristic vector field X0 is always divergence

free: in fact, by (2), we have

divX0 = 〈∇M
X0
X0, X0〉+ 〈∇M

X1
X0, X1〉+ 〈∇M

X2
X0, X2〉

= 〈∇X1ν,X2〉 − 〈∇X2ν,X1〉 = 0.

On the other hand, we can also consider the trace of HessH , which can be written in our

orthonormal frame E as

∆Hu :=
2∑
j=1

(
XjXju− (∇M

Xj
Xj)u

)
.

The difference of the two operators is given by the following first order horizontal vector

field

(3) V := ∇M
X0
X0 = h02X1 − h01X2 ∈ HM.

As a matter of fact, we have

∆div
H = ∆H − V.
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Let us explicitly remark that V (which is the null vector if M is the sphere) is not

divergence free in general. We also stress that both the operators are purely horizontal,

in the sense that first order derivatives along X0 do not appear. In fact, by the properties

of the complex structure J and the symmetries of the second fundamental form, we get

〈∇M
X1
X1, X0〉+ 〈∇M

X2
X2, X0〉 = 〈∇X1X2, ν〉 − 〈∇X2X1, ν〉 = 0.

From now on, let us assume M = ∂Ω has constant Levi curvature L. We recall that

this easily implies that L > 0. It is important to notice that, since L > 0, both ∆div
H

and ∆H are Hörmander type operators since we have the following step-two Hörmander

condition

(4) 〈[X1, X2], X0〉 = 〈∇X1X2 −∇X2X1, X0〉 = 2L > 0.

Inspired by the Jellett’s proof, we suppose that M is starshaped with respect to 0 and we

consider the function u : M −→ R defined as

u = L
|p|2

2
− 〈p, ν〉 .

We can compute ∆Hu and ∆div
H u. To this aim, we introduce the notations

a1 := 〈p,X1〉 , a2 = 〈p,X2〉 , A1 := h01h12 − h11h02, A2 := h22h01 − h12h02.

It is proved in [18, Lemma 3.1 and Lemma 3.2], by using the fact that L is constant and

the Codazzi equations, that

∆div
H u = (‖hH‖2−2L2) 〈p, ν〉+((h01)2 +(h02)2)) 〈p, ν〉−3(a1A1 +a2A2)−L(a1h02−a2h01),

∆Hu = (‖hH‖2 − 2L2) 〈p, ν〉+ ((h01)2 + (h02)2)) 〈p, ν〉 − 2(a1A1 + a2A2).

The term (‖hH‖2 − 2L2) 〈p, ν〉 is the exact analogous of the Euclidean case, where the

term (‖h‖2− nH2) 〈p, ν〉 magically appears. The inequality (1) applied to the matrix hH

and the starshapedness assumption imply in fact that

(‖hH‖2 − 2L2) 〈p, ν〉 ≥ 0.

If we want to conclude that u is either ∆div
H or ∆H-subharmonic, the problem relies on

the remaining terms. For both of them, we have no clue about their sign. Even more
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importantly, we don’t have a significant class of examples for which we can guarantee a

nonnegative sign. This is the reason why we introduce a first order perturbation of the

two ‘subLaplacians’.

3. Integral and pointwise identities

The subelliptic operator we want to deal with is the following

L = ∆H + 4V = ∆div
H + 5V.

Such operator is (in general) neither the trace of the horizontal Hessian nor the divergence

of the horizontal gradient, and it is not (in general) in divergence form. If we now compute

Lu (see [18, Proof of Theorem 1.1]), we get

Lu = (‖hH‖2 − 2L2) 〈p, ν〉+ 3((h01)2 + (h02)2)) 〈p, ν〉+ 2RL,

where RL is defined by the following quantity

RL := 2L(a1h02 − a2h01) + (a1A1 + a2A2)−
(
(h01)2 + (h02)2

)
〈p, ν〉 .

At a first sight, it seems to be just another remainder term. The reason for the particular

choice of the operator L relies in the following lemma, which is proved in [18, Lemma 3.3].

Lemma 3.1. We have

RL = W (〈p,X0〉),

where W = JV = h01X1 + h02X2.

Moreover, when L is constant, W is divergence free.

The divergence free condition implies that∫
M

RL dσ = 0,

which says that Lu has nonnegative average. We still don’t know if Lu is pointwise

nonnegative for a general starshaped hypersurface M with constant Levi curvature. What

we have proved in [18, Proof of Corollary 1.1] is that

if Ω is circular =⇒ 〈p,X0〉 = 0 ∀ p ∈ ∂Ω,
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which implies by Lemma 3.1 that RL ≡ 0. This is the crucial point where the assumption

of being circular comes into play. Recalling now the starhapedness of M and the algebraic

inequality (1) applied to the matrix hH , we have

Lu ≥ 0 in M,

i.e. u is a smooth subsolution for L. On the other hand, since M is compact, u must have

a maximum point. Such a maximum point has to be interior since M has no boundary.

We can then exploit the fact that L is an Hörmander-type operator by (4). This says that

the strong maximum principle holds true for L, and therefore u is forced to be constant

and Lu ≡ 0. Since 0 = Lu = (‖hH‖2 − 2L2) 〈p, ν〉 + 3((h01)2 + (h02)2)) 〈p, ν〉 and having

〈p, ν〉 > 0, we thus get

‖hH‖2 = 2L2 and h01 = h02 = 0.

This gives at one time that hH is a multiple of the identity matrix (from the equality

case in (1)) and the fact that the full second fundamental form h is diagonal. It is now

not difficult to conclude that M is a sphere. For more details we refer to [18, Proof of

Theorem 1.1], where the same desired conclusion is deduced from a weaker information.
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