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ABSTRACT. We give an overview on recent regularity results of local vectorial min-

imizers of under two main features: the energy density is uniformly convex with

respect to the gradient variable only at infinity and it depends on the spatial vari-

able through a possibly discontinuous coefficient. More precisely, the results that we

present tell that a suitable weak differentiability property of the integrand as function

of the spatial variable implies the higher differentiability and the higher integrability

of the gradient of the local minimizers. We also discuss the regularity of the local

solutions of nonlinear elliptic equations under a fractional Sobolev assumption.

SUNTO. Presentiamo alcuni recenti risultati di regolarità dei minimi locali vettoriali

di funzionali integrali le cui caratteristiche principali sono che le densità di energia

sono uniformemente convesse solo all’ infinito e che, come funzioni della variabile

spaziale possono essere discontinue. Tali risultati possono essere sintetizzati come

segue: una opporuna differenziabilità debole dell’ integrando rispetto alla variabile

spaziale implica la maggiore differenziabilità e maggiore integrabilità del gradiente

del minimo. Discutiamo anche la regolarità delle soluzioni locali di equazioni non

lineari ellittiche sotto ipotesi di differenziabilità frazionaria.
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1. INTRODUCTION

Classical variational problems are related to the study of the existence and the regu-

larity of local minimizers of integral functionals of the type

(1.1) F(u; Ω) :=

∫
Ω

F (x,Du) dx,

where Ω is a bounded open set in Rn, n ≥ 2, u : Ω → RN , N ≥ 1, and the integrand

F : Ω× RnN → R is a Carathéodory map such that ξ → F (x, ξ) is a convex function

for almost every x ∈ Ω. As far as the growth conditions are concerned, we assume

that there exist exponents p, q, with 1 < p ≤ q, and a constant L > 0, such that

(1.2) |ξ|p ≤ F (x, ξ) ≤ L(1 + |ξ|2)
q
2 ,

for almost every x ∈ Ω and for all ξ ∈ RnN .

We recall that u ∈ W 1,1
loc (Ω,RN) is a local minimizer of the functional F in (1.1) if

F (x,Du) ∈ L1
loc(Ω)

and

F(u; suppϕ) ≤ F(u+ ϕ; suppϕ),

for any ϕ ∈ W 1,1(Ω,RN) with suppϕ b Ω.

If p = q we say that the functional F(u; Ω) has p-growth or that satisfies standard

growth conditions. If p < q, we say that the functional F(u; Ω) has (p, q)-growth or

that satisfies non standard growth conditions.

The regularity properties of minimizers of integral functionals of the type (1.1) under

standard growth conditions has been widely investigated over the last 50 years in case

the integrand F (x, ξ) depends on the x-variable through a Hölder continuous function

and is a strictly convex function with respect to the ξ- variable. Actually, the Hölder

continuity of F (x, ξ) with respect to the x variable leads to the C1 partial regularity of

the minimizers with a quantitative modulus of continuity that can be determined in de-

pendence on the modulus of continuity of the coefficients (for an exhaustive treatment,

we refer the interested reader to [45, 22] and the references therein).



REGULARITY RESULTS FOR LOCAL MINIMIZERS 131

It is worth pointing out that partial regularity results are a common feature when

treating vectorial minimizers. Namely, in the vectorial setting everywhere regularity

cannot be proven as it is shown by the counterexamples due to De Giorgi and by those

due to Sverak and Yan ([25, 65]), unless some additional structure assumptions are

imposed on the energy densities.

The study of the regularity properties of local minimizers of functionals satisfying

(p, q)-growth conditions started with the pioneeristic papers by Marcellini ([56, 57,

58, 59]). It is important to remark that an example by Giaquinta ([40]) and Marcellini

([55]) implies that a bound on the gap between p and q is a necessary condition to

the local regularity. It is now well known that, in general, to have the regularity of

minimizers the gap between p and q must be not too large; in many cases this relation is

expressed by an inequality of the type q ≤ c(n)p, with c(n)→ 1+ as n goes to infinity

([1, 4, 27, 28, 34, 35] and, for more details and references, [60]). It worth noting that,

besides a condition on the distance between the growth and the ellipticity exponents,

the dependence of the integrand on the x-variable can give substantial difficulties since

the Lavrentiev phenomenon may appear ([28]).

The study of the regularity has been successfully carried out under weaker assump-

tions on the convexity of the integrand F (x, ξ) with respect to the ξ-variable, i.e under

a uniform convexity assumption only for large values of the modulus of the gradient

( see for example [7, 29, 41, 54, 31, 32, 33, 64] for the case of standard growth con-

ditions and [17, 21, 6] for the case of non standard growth conditions). So far, such

regularity results have been proven under a smooth dependence of F (x, ξ) from the

x-variable.

On the other hand, in the last few years, in case of standard growth conditions

the regularity of the local minimizers has been established under weaker assumptions

on the function that measures the oscillations of the integrand with respect to the x-

variable. Actually, when the partial map x→ DξF (x, ξ) belongs to a suitable Sobolev

class the higher differentiability as well as the partial Hölder continuity of the gra-

dient of the local minimizers have been obtained in [37, 42, 61, 62, 63, 43] (see also
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[52, 53]). More recently, the regularity of the solutions of some parabolic systems with

Sobolev coefficients has been faced in [39]. We also refer to [36, 38] for the case of

functionals with variable exponents growth conditions.

In Section 2, we present some recent results concerning the regularity properties

of the minimizers of integral functionals of the type (1.1), allowing a discontinuous

dependence for the integrand F (x, ξ) with respect to x- variable through a suitable

weakly differentiable function in case the integrand is convex with respect to the gra-

dient variable only at infinity. The case of non standard growth conditions is also

considered.

More precisely, we shall illustrate that a suitable weak differentiability property of in-

teger order of the partial map x → DξF (x, ξ) implies the higher differentiability of

the same order and the higher integrability of the gradient of the local minimizers.

Finally, in Section 3, we consider non linear elliptic equations of the form

divA(x,Dv) = div(|G|p−2G) in Ω ⊂ Rn,

where A(x, ξ) is a p-harmonic type operator such that the partial map x → A(x, ξ)

belongs to a fractional Sobolev space. Under this assumption, the fractional differen-

tiability of the right hand side G transfers to the gradient of the solutions with no loss

in the order of differentiability.

2. FUNCTIONALS WITH SOBOLEV COEFFICIENTS

Let us consider the integral functional defined in (1.1) satisfying the growth assump-

tion (1.2). We assume some convexity and regularity on F (x, ξ) only for large values

of the modulus of ξ. More precisely, we assume that there exists a radius R̄ > 0 such

that:

• Radial structure. There exists F̃ : Ω× [R̄,+∞) s. t.

(2.1) F (x, ξ) = F̃ (x, |ξ|),

a.e. x ∈ Ω and for all ξ ∈ RnN \BR̄(0).
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• C2-asymptotic convexity or p-uniform convexity at infinity. The function ξ 7→

F (x, ξ) is of a class C2(RnN) and there exists ν > 0 such that

(2.2) 〈DξξF (x, ξ)λ, λ〉 ≥ ν(1 + |ξ|2)
p−2
2 |λ|2

a.e. x ∈ Ω and for all ξ ∈ RnN \BR̄(0).

• Growth of DξξF . There exists a constant L1 > 0 such that

(2.3) |DξξF (x, ξ)| ≤ L1(1 + |ξ|2)
q−2
2

a.e. x ∈ Ω and for all ξ ∈ RnN \BR̄(0).

• Sobolev regularity with respect to the x-variable. The function x → DξF (x, ξ)

is weakly differentiable for all ξ ∈ RnN \BR̄(0) and there exists k(x) ∈ Lrloc(Ω), with

r ≥ p+ 2, such that

(2.4) |DxDξF (x, ξ)| ≤ |k(x)|(1 + |ξ|2)
q−1
2

a.e. x ∈ Ω and for all ξ ∈ RnN \BR̄(0).

If we take into account that many properties are requested only at infinity, a model

functional in our setting is

(2.5) F(u; Ω) :=

∫
Ω

|Du|p + a(x)|Du|q dx, 1 < p ≤ q,

with a ∈ W 1,r
loc (Ω) ∩ L∞(Ω), a ≥ 0 and a ≡ 0 in a subset of positive measure.

A very recent paper by Eleuteri, Marcellini and Mascolo ([26]) deals with integral

functionals that are uniformly convex only for large values of the modulus of the gra-

dient and that depend on the x-variable through a Sobolev coefficient.

More precisely, besides the (p, q)-growth conditions, they deal with an integrand F

satisfying (2.1) for all ξ ∈ RnN , and satisfying the assumption (2.4) with a function k

belonging to Lr, with r > n. They proved the local Lipschitz continuity of the local

minimizers of the functional F if

(2.6)
q

p
< 1 +

1

n
− 1

r
.
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Note that this assumption on the gap q
p

is sharp as shown in [28] and [30] ( see also

[10] and [11] for related results).

The aim in [15] is to show that, in the Sobolev dependence on the x-variable ex-

pressed by the assumption (2.4), it is sufficient to assume r = n to prove that, under

a p-convexity condition only at infinity, the local minimizers of the functional F have

the gradient locally in Lt for every t > p and, therefore, that they are locally Hölder

continuous for every exponent 0 < α < 1.

More precisely, taking into account that, without loss of generality, we can assume

R̃ = 1, the result is the following.

Theorem 2.1. Let F : Ω×RnN → [0,+∞), n ≥ 3, be a Carathéodory function such

that F = F (x, ξ) is convex and C2 with respect to the last variable and satisfies the

assumptions (1.2) with 1 < p = q and (2.1)-(2.4) with r = n. Let u ∈ W 1,p
loc (Ω,RN) be

a local minimizer of (1.1). Then u is locally α-Hölder continuous for all α ∈ (0, 1).

Moreover, for all t > p and for all Bρ(x0) ⊂ BR(x0) b Ω, we have that[∫
Bρ(x0)

|Du|t dx

] 1
t

≤ C

[∫
BR(x0)

(1 + F (x,Du)) dx

] 1
p

,

where C = C(n,N, p, t, L, L1, ν, ρ, R).

The assumption p = q is not surprising: indeed, looking at the condition (2.6),

which is sharp as suggested by the examples in [28] and [30], if r goes to n, then the

condition on the gap reduces to q
p
≤ 1.

We also remark that Hölder continuity results for any exponent α strictly less than

1 are not uncommon when the integrands depend on the x-variable. We refer to [14]

and [62] for examples of not locally Lipschitz continuous minimizers, but Hölder con-

tinuous for every exponent 0 < α < 1.

The proof of Theorem 2.1 is achieved by establishing first an a priori estimate and

then using an approximation argument.

The key tool in the proof of the a priori estimate is the construction of test functions

that are proportional to a suitable power of the gradient of the minimizer and that
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vanish in the set where the ellipticity of the Euler Lagrange system associated to the

functional is lost.

Moreover, a suitable iteration argument is needed to reabsorb terms with critical

summability exponents. Next, we construct a sequence of integrands that are regular

with respect to the x variable and p-uniformly convex with respect to the gradient

variable in the whole RnN and we show that the a priori estimate is preserved in passing

to the limit.

We remark that the assumption n ≥ 3 is necessary in establishing the a priori estimate

and, as far as the case p = n = 2 is concerned, the only available result for the

vectorial setting is contained in [62]. More precisely, let us assume that there exist

constants `, L > 0 such that

(2.7) |ξ|2 ≤ F (x, ξ) ≤ L(1 + |ξ|2),

(2.8) 〈DξF (x, ξ)−DξF (x, η), ξ − η〉 ≥ `

2
|ξ − η|2

and assume that there exists k ∈ L2
loc(Ω), such that

(2.9) |DxDξF (x, ξ)| ≤ |k(x)|(1 + |ξ|)

a.e. x, y ∈ Ω ⊂ R2 and for every ξ, η ∈ R2×N .

Then the following result holds.

Theorem 2.2. Let F : Ω × R2N → [0,+∞), be a Carathéodory function such that

F = F (x, ξ) is C1 with respect to the last variable and satisfies the assumptions (2.7)-

(2.9). Let u ∈ W 1,2
loc (Ω,RN) be a local minimizer of (1.1). Then Du ∈ W 1,t

loc (Ω), for

every t < 2.

Moreover there exists R0 = R0(N,L, t) such that∫
BR

|D2u|t dx ≤ C

R2

(∫
B2R

|k|2 dx
) 1

2
∫
B2R

|Du|2 dx,

for every R such that B2R ⊂ BR0 ⊂ Ω. In particular, Du ∈ Ltloc(Ω) for every t > 1.
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As before, the proof is based on an a priori estimate and an approximation argument.

In this case the test functions are constructed combining the difference quotient method

with the following stability property of the Hodge decomposition due to Iwaniec and

Sbordone ([48]).

Lemma 2.1. Let w ∈ W 1,p(Rn), and let 1 < p < ∞. Then there exist vector fields

E ∈ Lp′(Rn) with curl(E) = 0 and B ∈ Lp′(Rn) with div(B) = 0 such that

Dw|Dw|p−2 = E + B.

Moreover

‖E‖Lp′ (Rn) ≤ C ‖Dw‖p−1
Lp(Rn)

and

‖B‖Lp′ (Rn) ≤ C max{p− 2, p′ − 2} ‖Dw‖p−1
Lp(Rn),

where C is a universal constant.

The Hodge decomposition allows us to obtain an estimate for the second derivatives

of the minimizer in a space of summability slightly larger than the natural one. Then

a double iteration procedure is needed to handle integrals with critical integrability

exponent.

We’d like to notice that Theorem 2.2 is sharp. More precisely, we can not have, in

general, neither D2u ∈ L2 nor Du ∈ L∞.

Indeed, the function

u(x1, x2) = x1(1− log |x|) x ∈ B
(

0,
1

e

)
⊂ R2

solves the equation div(A(x)Du) = 0, where A(x) is a matrix satisfying the assump-

tions of Theorem 2.2 with

K(x) =
1

|x|(1− log |x|)
∈ L2

(
B

(
0,

1

e

))
.

We have

|Du| ∼ (1− log |x|) and |D2u| ∼ 1

|x|
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and so Du ∈ Lt for all t > 1 but Du 6∈ L∞. Moreover, u ∈ W 2,q for all 1 < q < 2,

but u 6∈ W 2,2.

We also notice that the assumption k ∈ L2 in (2.9) can not be weakened (in the scale

of Lebesgue spaces) and obtain the same regularity. In fact, the function

u(x1, x2) = x1|x|α−1 α ∈ (0, 1)

solves the equation div(A(x)Du) = 0, where A(x) is a matrix satisfying our assump-

tions with

k(x) ∼ 1

|x|
∈ Lp ∀p < 2

and

|Du| ∼ |x|α−1, |D2u| ∼ |x|α−2.

Therefore

u ∈ W 1,t ∀t < 2

1− α
and u ∈ W 2,q ∀q < 2

2− α
.

We now come to the case of functionals with non standard growth conditions, i.e. satis-

fying the assumptions (1.2) with p < q and (2.1)–(2.4). First, we want to recall that the

radial structure of the integrand expressed by (2.1) guarantees the local boundedness

of the minimizers under the following condition

q < p∗ =
np

n− p

between the growth and the ellipticity exponents ([18, 19, 20, 23, 24]). Such local

boundedness allow us to deal with functionals with non standard growth conditions

that are uniformly convex only for large values of the modulus of the gradient of the

minimizer and with a W 1,n assumption on the partial map x → DξF (x, ξ). More

precisely, in the forthcoming paper [16], we establish the following

Theorem 2.3. Let u ∈ W 1,p(Ω;RN) be a local minimizer of the functional F(u,Ω),

satisfying the assumptions (1.2)–(2.4) with r ≥ p+ 2. If

1 < p ≤ q ≤ min

{
p+ 1− p+ 2

r
, p∗
}
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then, setting

G(t) =

∫ t

0

(1 + s)
p−4
2 s ds

we have

G((|Du| − 1)+) ∈ W 1,2
loc (Ω) and Du ∈ Lp+2(Ω).

Moreover∫
BR

∣∣∣∣ (|Du| − 1)+

1 + (|Du| − 1)+

|Du|
p−2
2 D2u

∣∣∣∣2≤C (1 + ‖k‖Lr(BR)

) p+2
q−p−1

(∫
B4R(x0)

(1 + f(x,Du))

)γ
with γ = γ(p, q, n).

We remark that the assumption on k is weaker than k ∈ Ln in the case 2 ≤ p < n−2.

The main tool in the proof of previous Theorem is the use of the local boundedness

of the minimizers u ∈ W 1,p
loc (Ω) combined with the following Gagliardo-Nirenberg

type interpolation inequality (see [5]).

Lemma 2.2. For every u ∈ C2(Ω,RN), η ∈ C1
c (Ω), η ≥ 0, and every κ ∈ RN , we

have∫
Ω

η2(1 + |Du|2)
p
2 |Du|2 dx ≤ c(p)||u− κ||2L∞(suppη)

∫
Ω

η2(1 + |Du|2)
p−2
2 |D2u|2 dx

+c||u− κ||2L∞(suppη)

∫
Ω

(|η|2 + |∇η|2)(1 + |Du|2)
p
2 dx,

for a positive constant c = c(p).

Roughly speaking, the local boundedness of the minimizers together with the exis-

tence of the second derivatives implies the higher integrability of the gradient of the

solutions with exponent p+2, which improves the one given by the Sobolev imbedding

Theorem in case p < n − 2. This is precisely the case in which we improve previous

results, weakening the assumption on the summability of the weak derivative of the

partial map x→ DξF (x, ξ).

It is worth to point out that the bound on q depends on the assumption on k(x) in

(2.4) and obviously improves if r →∞, where r is the summability exponent of k(x).
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Theorem 2.2, in case p = q and with F (x, ξ) strictly convex in the whole RnN has

been proven in [44].

3. ELLIPTIC EQUATIONS WITH FRACTIONAL SOBOLEV COEFFICIENTS

In this section we confine ourselves to the scalar case (N = 1) and we want to

discuss some regularity results for weak solutions to

(3.1) divA(x,Dv) = 0 in Ω ⊂ Rn,

whereA : Ω×Rn → Rn is a Carathéodory map . We assume that there exist 2 ≤ p ≤ n

and constants α, β > 0 such that

(3.2) α(1 + |ξ|2 + |η|2)
p−2
2 |ξ − η|2 ≤ 〈A(x, ξ)− A(x, η), ξ − η〉,

(3.3) |A(x, ξ)− A(x, η)| ≤ β(1 + |ξ|2 + |η|2)
p−2
2 |ξ − η|.

Concerning the dependence on the x-variable, we assume that there exist k(x) ∈

Lr(Ω), r > 1, and 0 < α ≤ 1, such that

(3.4) |A(x, ξ)− A(y, ξ)| ≤ (|k(x)|+ |k(y)|)|x− y|α(1 + |ξ|2)
p−1
2 ,

for a.e. x, y ∈ Ω and for all ξ, η ∈ Rn.

It is known that the p-growth condition expressed by (3.3), the p-ellipticity expressed

by (3.2) and theW 1,n-Sobolev assumption on the coefficients, i.e. the assumption (3.4)

with α = 1 and r = n (see [46]), allow to expect higher differentiability results for the

solutions with integer order.

In particular, the equations satisfying (3.2), (3.3) and (3.4) with α = 1 and σ = n,

(including the so called Beltrami equations in the case p = n = 2), were recently

studied in [8, 61, 62, 42].

We assume, in this scalar case, that the inequality (3.4) holds, with 0 < α < 1.

Roughly speaking, we deal with case in which the map x→ A(x, ξ) enjoys a fractional

differentiability property ( for related results in this setting see [51]). To state the result
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properly, we recall that the following definition of the Besov spaces via difference

quotients (see [66, Section 2.5.12]).

Definition 3.1. Let 1 ≤ p <∞, 1 ≤ q ≤ ∞ and 0 < α < 1. Let v ∈ Lp(Rn). We say

that

• v ∈ Bα
p,q(Rn) if(∫

Rn

(∫
Rn

|v(x+ h)− v(x)|p

|h|αp
dx

) q
p dh

|h|n

) 1
q

< +∞,

• v ∈ Bα
p,∞(Rn) if

sup
h∈Rn

(∫
Rn

|v(x+ h)− v(x)|p

|h|αp
dx

) 1
p

< +∞.

For a fixed ball BR the Besov spaces Bα
p,q(BR) consists of the function v ∈ Lp(BR),

such that ϕv ∈ Bα
p,q(Rn), for some ϕ ∈ C∞0 (BR).

There is a link between Besov spaces and Lebesgue ones, given by the following

embedding results (a proof can be found at [47, Prop. 7.12]).

Theorem 3.1. Let 0 < α < 1 and 1 ≤ p < n
α

and 1 ≤ q ≤ np
n−αp =: p∗α. Then the

following inclusions hold:

Bα
p,q ⊂ Lp

∗
α

Moreover, if p = n
α

and 1 ≤ q ≤ ∞, then

Bα
n
α
,q ⊂ VMO.

We recall that VMO denotes the space of functions with vanishing mean oscilla-

tions; i.e.

f ∈ VMO ⇐⇒ lim
r→0

sup
x

sup
Br(x)

−
∫
Br(x)

|f − fB| dx = 0

where fB :=

∫
B

f(x) dx.

Note that the assumption (3.4) with k(x) ∈ L
n
α and 0 < α < 1 implies that the

partial map x 7→ A(x, ξ) belongs to the Besov space Bα
n
α
,∞.
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In this framework the higher differentiability of solutions of Beltrami equations (p =

n = 2) is obtained by Cruz, Mateu and Orobitg [12] and Baison, Clop and Orobitg [2].

Here we state the following recent result proved by Baison, Clop, Giova, Orobitg

and Passarelli di Napoli in [3] in case p = 2 and by Clop, Giova and Passarelli di

Napoli in [9] in case p > 2.

Theorem 3.2. Let 0 < α < 1 andA : Ω×Rn → Rn be a Carathéodory map satisfying

(3.2) and (3.3). Assume that there exists a non negative function k ∈ L
n
α , such that

(3.4) holds. If u ∈ W 1,p
loc is a weak solution of (3.1), then

(1 + |Du|2)
p−2
4 Du ∈ Bα

2,∞(BR),

for every ball BR b Ω.

The proof relies on the basic fact that assumption (3.4) with k ∈ L
n
α implies that

x 7→ A(x, ·) is locally uniformly VMO (see [3]). At this point, the theorem is achieved

by using the following regularity result for solutions of equations with VMO coeffi-

cients, also proved in [3].

Theorem 3.3. If A satisfies (3.2) and (3.3) and x 7→ A(x, ·) is VMO regular, then for

every solution u ∈ W 1,p of

(3.5) div(A(x,Du)) = div(|G|p−2G)

with G ∈ Lqloc(Ω), q > p, we get Du ∈ Lqloc(Ω).

We’d like to mention that Theorem 3.3 extends to general linear elliptic equations

previous results by Iwaniec and Sbordone [49] and Kinnunen and Zhou [50].

Improving the regularity of the coefficients, i.e. assuming that the partial map x 7→

A(x, ξ) belongs to the Besov spaceBα
n
α
,q, with q <∞ yields the following

Theorem 3.4. Let A : Ω × Rn → Rn be a Carathéodory map satisfying (3.2) and

(3.3) . Assume in addition that x 7→ A(x, ξ) ∈ Bα
n
α
,q . Let u ∈ W 1,p

loc (Ω) be a weak

solution of (3.5). If |G|p−2G ∈ Bα
2,q(B2R) then

(1 + |Du|2)
p−2
4 Du ∈ Bα

2,q(BR),
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for every 1 ≤ q ≤ 2n
n−2α

=: 2∗α and for every ball BR ⊂ B2R ⊂ Ω.

We refer to [3] for the case p = 2 and to [9] for the case p > 2.
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