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Abstract. The classical Steiner formula expresses the volume of the ε-neighborhood Ωε

of a bounded and regular domain Ω ⊂ Rn as a polynomial of degree n in ε. In particular,

the coefficients of this polynomial are the integrals of functions of the curvatures of the

boundary ∂Ω. The aim of this note is to present the Heisenberg counterpart of this

result. The original motivation for studying this kind of extension is to try to identify a

suitable candidate for the notion of horizontal Gaussian curvature.

The results presented in this note are contained in the paper [4] written in collabora-

tion with Zoltán Balogh, Fausto Ferrari, Bruno Franchi and Kevin Wildrick.

Sunto. La classica formula di Steiner afferma che il volume dell’ε-intorno Ωε di un

dominio limitato e regolare Ω ⊂ Rn si scriva come un polinomio di grado n in ε. In

particolare, i coefficienti di questo polinomio sono dati da integrali di funzioni delle

curvature del bordo ∂Ω. In questa nota presenteremo l’analoga versione della formula

di Steiner nel caso del primo gruppo di Heisenberg H. La motivazione originale che ha

portato allo studio della formula di Steiner in H consiste nella ricerca di un possibile

candidato per la nozione di curvatura di Gauss orizzontale.

I risultati che presenteremo sono contenuti nel lavoro [4] scritto in collaborazione con

Zoltán Balogh, Fausto Ferrari, Bruno Franchi and Kevin Wildrick.
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1. Introduction

The Steiner formula was first proved it in two and three dimensional Euclidean spaces

for convex polytopes. Weyl extended it later (see [23]) to the setting of arbitrary smooth

submanifolds of Rn. In [12], Federer proved a localized version of the above formula for a

large class of non-smooth submanifolds, introducing the concept of sets of positive reach.

Let us try to give a flavour of the content of the Steiner formula by stating it in Rn.

To this aim, let us denote by Ω ⊂ Rn a bounded regular domain, and by Ωε its ε-

neighborhood with respect to the standard Euclidean metric. The Steiner formula asserts

that the volume Ln(Ωε) of Ωε can be expressed as a polynomial of degree n in ε:

(1) Ln(Ωε) =
n∑
k=0

akε
k,

where the coefficients ak are integrals of suitable functions of the curvatures of of ∂Ω. In

particular, in the even simpler case of R3, the coefficients a2 and a3 are the integrals of

scalar multiples of the mean curvature and of the Gaussian curvature of ∂Ω, respectively.

This explicit appearance of the curvatures of ∂Ω as integrands in the coefficients of the

Steiner formula, has been our original motivation to look for a Heisenberg counterpart

of such a formula. We must mention here that the existence of a Steiner formula in the

first Heisenberg group has been already addressed by Ferrari in [13], where he proved the

validity of a global Steiner formula for the case of Carnot-Carathéodory balls.

In order to state the first main result presented in this note, we need to introduce some

notation. Let us denote by {X1, X2} an orthonormal basis of the Lie algebra h associated

to the first Heisenberg group H. Let Ω ⊂ H be an open set and let u : Ω → R be a

C∞-smooth function, we will define the iterated horizontal divergences of u as follows:

(2) div
(i)
H u :=

 1, i = 0,

divH

(
(div

(i−1)
H u) · ∇Hu

)
, i ≥ 1,

where ∇Hu := (X1u)X1 + (X2u)X2 is the horizontal gradient of u. Our first main result

is then given by the localized Heisenberg counterpart of the Euclidean Steiner formula.

Theorem 1.1. Let Ω ⊂ H be a bounded smooth domain with C∞-regular boundary and

let Q ⊂ H be a localizing set with the property that ∂Ω ∩ Q is free from characteristic
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points. We denote by δcc the signed Carnot-Carathédory distance function defined in a

neighborhood of ∂Ω ∩ Q. For ε ≥ 0, let Ωε ∩ Q be a localized Heisenberg ε-neighborhood

of Ω. Then there is a positive constant ε0 > 0 such that the function ε 7→ L3(Ωε ∩ Q) is

analytic on the interval [0, ε0) and has a power series expansion given by

(3) L3(Ωε ∩Q) = L3(Ω ∩Q) +
∑
i≥1

εi

i!

∫
∂Ω∩Q

(div
(i−1)
H δcc) dH3

cc.

We refer to Section 4 for the motivations and the precise description of the localization

away from characteristic points given by the set Q.

The remarkable fact is that, a priori, the (i− 1)st iterated divergence div
(i−1)
H δcc, i > 1,

contains derivatives of order i, but this is actually not the case. This is the content of our

second main result. In order to state it precisely we need to introduce some notation. Let

us denote by X3 the canonical left-invariant vertical vector field in H. Let us also define

the following quantities:

A := X11δcc +X22δcc, B := −(4X3δcc)
2, C := −4 ((X1δcc)(X32δcc)− (X2δcc)(X31δcc)) ,

D := 16X33δcc, E := 16
(
(X31δcc)

2 + (X32δcc)
2
)
,

where to simplify the notation we denoted Xi(Xjδcc) by Xijδcc, for i = 1, 2, 3.

Theorem 1.2. Under the conditions of Theorem 1.1, the following relations hold:

div
(1)
H δcc = A, div

(2)
H δcc = B + 2C,

div
(3)
H δcc = AB + 2D, div

(4)
H δcc = B2 + 2BC + 2AD − 2E,

and for all j ≥ 2,

div
(2j−1)
H δcc = Bj−2 (AB + 2(j − 1)D) ,(4)

div
(2j)
H δcc = Bj−2

(
B2 + 2BC + 2(j − 1)(AD − E)

)
.(5)

Let us make a small comment on the technique adopted to prove Theorem 1.1: the main

ingredient in the proof is given by a systematic and iterated use of the divergence Theo-

rem, conveniently adapted to our Heisenberg frame (see Proposition 4.2). This technique,

that we will call iterated divergence technique, has been inspired by the works [21, 22] by

Reilly. As far as we know, this approach is new even in the Euclidean case (see Section
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2).

It is clear that the Heisenberg counterpart of the Steiner formula is pretty different from

the Euclidean one. The first gap that we can notice comparing the Euclidean Steiner for-

mula (1) to the Heisenberg one (3), is that the latter is not more a polynomial but a series

in ε. Secondly, the recursive formula provided by Theorem 1.2 shows that the integrands,

given by the iterated divergences, cannot be anymore related to the symmetric polynomi-

als of a Hessian matrix (see Remark 4.1). On the other hand, this time in analogy with

the Euclidean case, Theorem 1.2 proves that the coefficients of the series (3) are integrals

of second order derivatives of the function defining ∂Ω. Although the idea of looking

for a suitable candidate for the notion of horizontal Gaussian curvature via the study of

Steiner formula is definitely non-orthodox, the fact that div
(1)
H δcc is a scalar multiple of

the so called horizontal mean curvature, could suggest that div
(2)
H δcc could be a reasonable

candidate for the notion of horizontal Gaussian curvature away from characteristic points.

Let us now spend a few words on the existing literature concerning horizontal curva-

tures of smooth surfaces in H. First, let us recall that the classical differential geometric

approach to the study of the curvatures of a smooth embedded surface Σ ⊂ R3, is based

on the study of the eigenvalues of the differential of the Gauss normal map. There were

several attempts to propose a Heisenberg counterpart of the notion of Gauss normal map

away from characteristic points (see e.g. [9, 10]). Restricting the attention to the case of

graphs, there is a definition of horizontal Gaussian curvature modeled on the symmetrized

horizontal Hessian (see e.g. [9, 8]), which has also been used in [17] to study the flow by

horizontal Gaussian curvature by means of viscosity theory. A complete different defini-

tion of horizontal Gaussian curvature, based on an adapted covariant derivative, has been

recently proposed by Diniz and Veloso in [11]. The story is much more clear when we

deal with horizontal mean curvature. Indeed, there is already a well accepted notion of

horizontal mean curvature, which plays a crucial role in the still under development theory

of sub-Riemannian minimal surfaces. This concept was introduced in [20] by Pauls and it

is obtained as limit of the Riemannian mean curvature in the Riemannian approximation

scheme. The same approximation technique introduced by Pauls has been recently used

in [5]. In this case the authors studied the limit of the Riemannian Gaussian (or sectional)
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curvature and suggested another possible candidate for the notion of horizontal Gaussian

curvature. In this perspective, let us mention that the natural candidate suggested by

the Steiner formula in H (see Theorem 1.2 and Remark 4.1) slightly differs from the one

proposed in [5], and this indicates that there is still the need of a better understanding of

these concepts.

All the proofs of the new results presented in this note are contained in [4].

2. A glance at the Steiner formula in R3

Let us start with a simple but enlightening example in R3.

Example 2.1. Let B := B(0, r) = {x ∈ R3 : ‖x‖R3 < r} be the open ball of center 0 and

radius r > 0. Let ε > 0 be small enough. Let us define the ε-neighborhood of B to be

Bε =
{
x ∈ R3 : dist(x,B) < ε

}
= {x ∈ R3 : ‖x‖R3 < r + ε}.

Therefore

L3(Bε) =
4

3
π(r + ε)3 =

4

3
πr3 + 4πr2ε+ 4πε2 +

4

3
πε3.

Recalling that the mean curvature H of the sphere ∂B(0, r) is 1
r

and its Gaussian curvature

K is 1
r2

, we can write the Steiner formula for the Euclidean ball B(0, r) as follows:

L3(Bε) = L3(B) + εH2(∂B) + ε2
∫
∂B

H dH2 +
ε3

3

∫
∂B

K dH2,

where L3 denotes the Lebesgue measure and H2 the 2-Hausdorff measure.

This simple example seems to suggest that the Steiner formula could be a good tool

to recover information concerning the curvature of suitably regular surfaces which are

the boundary of given open and bounded sets. Since we are interested in extending the

Steiner formula to the first Heisenberg group H, we will briefly describe it in R3 but, as we

mentioned in the Introduction, a similar statement holds true in Rn. Let us introduce

the notation and the standing assumptions that we will adopt throughout this Section.

• Let Ω ⊂ R3 be an open, bounded and regular set with Euclidean C∞-smooth

boundary ∂Ω;

• let dist(·,Ω) : R3 → R+ be the distance function from Ω;
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• let δ := δ(x, ∂Ω) be the signed distance function from ∂Ω, defined as

δ(x) :=

 dist(x, ∂Ω), if x ∈ R3 \ Ω,

−dist(x, ∂Ω), if x ∈ Ω.

• let Ωε := Ω ∪ {x ∈ R3 : 0 ≤ δ(x) < ε} be the ε-neighborhood of Ω.

It is possible to prove that the signed distance function δ satisfies the eikonal equation,

(6)
3∑
i=1

(
∂δ

∂xi

)2

= 1.

In particular, if we think of ∂Ω as the 0-level set of the signed distance function δ,

∂Ω = {x ∈ R3 : δ(x) = 0},

we have a globally defined unit outward-pointing normal ν to ∂Ω, and it holds that

ν = ∇δ. It is very reasonable to expect the signed distance function δ to have one degree

of regularity less than ∂Ω but deep results from [18], [14] and [16], show that actually

there exists an open neighborhood U ⊂ R3 of ∂Ω such that δ|U has the same regularity of

∂Ω. This, coupled with the regularity assumptions made on ∂Ω, shows that the normal

ν is C∞-smooth.

The approach we want to present here is based on the works [21] and [22] by Reilly:

we will call it the iterated divergences technique. First, we need to define the iterated

divergences of the signed distance function δ.

Definition 2.1. Let Ω and δ be as before. We define the iterated divergences as follows

σk :=

 1, for k = 0,

div(σk−1· ∇δ), for k ≥ 1.

We stress that, thank to the regularity assumed on ∂Ω, the signed distance function δ is

C∞-smooth, and therefore the iterated divergences are certainly well defined.

We recall now the general definition of the symmetric polynomials.

Definition 2.2. Let V be an n-dimensional vector space with an inner product, and let

A : V → V be a linear symmetric transformation. Denote by λ1, . . . , λn its eigenvalues.
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For 0 ≤ k ≤ n, we define the kth-elementary symmetric function of the numbers λi’s as

Sk(A) :=
∑

1≤i1<...<ik≤n

λi1· . . . ·λik .

The first remarkable result relates the iterated divergences to the elementary symmetric

functions of the eigenvalues of Hessδ of the signed distance δ.

Theorem 2.1. Let Ω and δ be as before. Then

σ1 = S1(Hessδ), σ2 = 2S2(Hessδ), and σk = 0, for every k ≥ 3.

The already cited works [21] and [22] of Reilly play a fundamental role in the proof of

Theorem 2.1.

Remark 2.1. The main implication of Theorem 2.1 is that, despite their definition, the

iterated divergences σk’s can be described using only second order derivatives of the signed

distance function δ. One of the key points to prove this result is that differentiating the

eikonal equation (6) one can get several identities expressing higher order derivatives of

the signed distance function δ in terms of only second order ones.

The next step in the direction of proving the Steiner formula is to prove first the

analyticity of volume function ε 7→ L3(Ωε), and then to relate the derivatives of the

volume function ε 7→ L3(Ωε) to the integrals of the iterated divergences.

Definition 2.3. Let Ω ⊂ R3 as before and let Ωε be its ε-neighborhood. For k ≥ 0, let σk

be as in Definition (2.1). Define

Ik =

 L3(Ω), for k = 0,∫
∂Ω
σk−1 dH2, for k = 1, 2, 3.

Similarly, for k = 1, 2, 3,

Ik(ε) :=

∫
{δ=ε}

σk−1 dH2,

where {δ = ε} := {x ∈ R3 : δ(x) = ε} denotes the level sets of the distance function δ

from Ω.
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One can then prove the following Theorem:

Theorem 2.2. Let Ω, Ωε, δ, ν and σk be as before. Then

L3(Ωε) =
3∑

k=0

Ik
εk

k!
.

Sketch of the proof. Let ε > 0. Let us denote by a0(ε) := L3(Ωε) and then recursively,

ak(ε) := lim
s→0+

ak−1(ε+ s)− ak−1(ε)

s
, s > 0.

One can now show that the above limits are all well defined and that ak(ε) = Ik(ε), for

all k ∈ N. Finally we let ε→ 0+. �

Remark 2.2. We can now notice that we can weaken our regularity assumption on ∂Ω

up to C4-smooth. Roughly speaking, the reason is the following: requiring C4-smoothness

of ∂Ω implies C3 regularity of the normalized defining function δ of ∂Ω. Theorem 1.2

now shows that the iterated divergences can be expressed only in terms of second order

derivatives of the defining function δ, but in the explicit proof one needs to derive once

these expressions. We want also to stress that this approach based on the properties

of the signed distance function δ is possible only for submanifolds S of codimension 1,

because we need to give a meaning to the notions of inside and outside of S.

Let us also spend a few words on the geometric meaning of the coefficients appearing

in the Steiner formula. We recalled that the coefficients of the polynomial given by

the Steiner formula are integrals of the iterated divergences. By Theorem 2.1 these are

precisely the symmetric polynomials in the eigenvalues of the Hessian matrix Hessδ of the

signed distance function δ. It is a classical result of differential geometry of Euclidean

C2-smooth submanifolds, that those eigenvalues are nothing but the principal curvatures

of ∂Ω (see for instance [16, Chapter 14]). In particular, we have that the first iterated

divergence σ1 and σ2 are, respectively, scalar multiples of the mean curvature of ∂Ω and

of the Gaussian curvature of ∂Ω.
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3. Preliminaries on the Heisenberg group

We will recall only the basic notation needed in the following Section. We refer to the

monographs [6] and [7] for an introduction to the subject.

The first Heisenberg group H is the simplest model of a non commutative Carnot group.

H is identified with R3 with a non-commutative group law ∗ defined as

(y1, y2, y3) ∗ (x1, x2, x3) = (x1 + y1, x2 + y2, x3 + y3 + 2(x1y2 − x2y1)) ,

whose inverse is given by (x1, x2, x3)−1 = (−x1,−x2,−x3), and whose neutral element is

the origin 0 = (0, 0, 0). In this way (H, ∗) is a Lie group. The first Heisenberg group H

admits a 2-step stratification, h = V1⊕V2, where V1 = span{X1, X2} and V2 = span{X3},

for X1 = ∂x1 + 2x2∂x3 , X2 = ∂x2 − 2x1∂x3 and X3 = −1
4
[X, Y ] = ∂x3 .

The horizontal vector fields X1 and X2 are of fundamental importance in the context of

H because they define a 2-dimensional plane distribution HH, known as the horizontal

distribution:

HgH := span{X1(g), X2(g)}, g ∈ H.

This smooth distribution of planes is a subbundle of the tangent bundle of H, and

due to the fact that [X1, X2] = −4X3 /∈ HH, it is a non integrable distribution. The

horizontal distribution HH makes the Heisenberg group H one of the easiest examples

of a sub-Riemannian manifold. We define an inner product 〈·, ·〉g,H on HH, so that for

every g ∈ H, {X1(g), X2(g)} forms a orthonormal basis of HgH. We will then denote by

‖ · ‖g,H the horizontal norm induced by the scalar product 〈·, ·〉g,H. In both cases, we will

omit the dependance on the base point g ∈ H when it is clear. With these notions, we are

allowed to make measurements of all the horizontal objects. Among them, the horizontal

curves are of fundamental importance.

Definition 3.1 (Horizontal curves). An absolutely continuous curve γ : [a, b] ⊂ R → H

is said to be horizontal if

γ̇(t) ∈ Hγ(t)H, for a.e. t ∈ [a, b].

We can then define the horizontal length of the horizontal curves exploiting the scalar

product previously defined on HH.
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Definition 3.2 (Horizontal length). Let γ : [a, b]→ H a horizontal curve. The horizontal

length lH(γ) of γ is defined as

lH(γ) :=

∫ b

a

‖γ̇‖H dt.

The importance of the notion of horizontal curve relies on the fact that, as in the

Riemannian setting, we can use them to define a path-metric (and therefore the notion

of a geodesic), better known as Carnot-Carathéodory metric (cc-metric in short).

Definition 3.3 (cc-metric). Let x, y ∈ H, with x 6= y. The cc-distance of x, y is defined

as

dcc(x, y) := inf{lH(γ)|γ : [a, b]→ H, γ(a) = x, γ(b) = y}

We also recall the notions of horizontal gradient of a function and of horizontal diver-

gence of a horizontal vector field.

Definition 3.4 (Horizontal gradient). Let u : H→ R be a Euclidean C1-smooth function.

The horizontal gradient ∇Hu of u is the projection of the Euclidean gradient ∇u of u onto

the horizontal distribution, namely

∇Hu = (X1u)X1 + (X2u)X2.

Definition 3.5 (Horizontal divergence). Let V = aX1 + bX2 be a differentiable and

horizontal vector field. The horizontal divergence divHV of V is defined as

divHV = X1a+X2b.

4. Steiner formula in the Heisenberg group

The aim of this Section is to describe the steps followed in [4] to prove Theorem 1.1,

which is the localized counterpart of the Euclidean Steiner formula in the context of the

first Heisenberg group H. In order to do it properly, we need to introduce the notation, to

identify the main ingredients used in the Euclidean case and to recall some basic results.

Let Ω ⊂ H be an open, bounded and regular domain with Euclidean C∞-smooth boundary

∂Ω. As in the Euclidean case, we need to work with the cc-signed distance function δcc

from ∂Ω.
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Definition 4.1. Let dcc : H×H → R+ be the Carnot-Carathéodory distance on H. The

cc-distance from ∂Ω is defined as

distcc(g, ∂Ω) := inf
h∈∂Ω

dcc(g, h).

The signed distance δcc : H→ R from ∂Ω is defined as

δcc(g) =

 distcc(g, ∂Ω), if g ∈ H \ Ω,

−distcc(g, ∂Ω), if g ∈ Ω.

Let us also define the ε-neighborhood Ωε of Ω with respect to δcc:

Ωε := Ω ∪ {g ∈ H : 0 ≤ δcc(g) < ε} .

Due to the assumptions made on the regularity of ∂Ω, we have a well defined Euclidean

outward-pointing normal to ∂Ω, whose components with respect to the standard basis of

R3 are given by

ν(g) = (ν1(g), ν2(g), ν3(g)) , g ∈ ∂Ω.

As usual in the study of the Heisenberg geometry of submanifolds, for every g ∈ ∂Ω we

can also consider the horizontal normal N(g) := 〈X1(g), ν(g)〉X1(g)+〈X2(g), ν(g)〉X2(g),

where 〈·, ·〉 is the usual scalar product in R3. One of the typical geometrical obstructions

arising in the Heisenberg group H is provided by the so called characteristic set

char(∂Ω) := {g ∈ ∂Ω : TgΩ = HgH} .

It is important to stress that, as in the Euclidean case, we can think of the set ∂Ω as the

zero level set of δcc,

∂Ω = {g ∈ H : δcc(g, ∂Ω) = 0}.

In particular, we will have that N = ∇Hδcc. We want to follow the same ideas presented

in Section 2. In particular, we want to define a Heisenberg counterpart of the iterated

divergences. Formally, we can define them as follows:

(7) div
(i)
H δcc =

 1, for i = 0,

divH

(
(div

(i−1)
H δcc)· ∇Hδcc

)
, for i ≥ 1.

The main problem in the previous definition could come from the regularity of the cc-

signed distance function δcc. In this perspective, a result of Arcozzi and Ferrari in [1], and
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recently generalized in [3], states that δcc is as regular as ∂Ω, as in the Euclidean case,

but only away from char(∂Ω). The precise statement is the following.

Theorem 4.1. ([1, Theorem 1.1]) Let Ω ⊂ H be an open regular domain with Euclidean

Ck-smooth boundary ∂Ω, k ≥ 2. Then ∇Hδcc and δcc are Euclidean Ck−1-smooth in an

open neighborhood of ∂Ω− char(∂Ω) in H.

The previous result implies in particular that the iterated divergences introduced in (7)

are well-defined objects.

One of the key points in the Euclidean case was Theorem 2.1, which provided the

identification of the iterated divergences with the symmetric polynomials of the Hessian

matrix Hessδ of the signed distance function δ. A similar statement is unfortunately not

available in the case of the Heisenberg group H. A first question is whether we are able

to really compute the iterated divergences defined in (7), and the answer is provided by

Theorem 1.2. In order to make the few next pages more readable, let us fix the notation

we will use in the following. We will denote the action of XiXj on any smooth function

by Xij and similarly XiXjXk by Xijk, for i, j, k ∈ {1, 2, 3}. With this at hand, we can

briefly recall the content of Theorem 1.2. Define the iterated divergences as in (7) and set

A := ∆Hδcc, B := −(4X3δcc)
2, C := −4 ((X1δcc)(X32δcc)− (X2δcc)(X31δcc)) ,

D := 16X33δcc, E := 16
(
(X31δcc)

2 + (X32δcc)
2
)
.

Then Theorem 1.2 states that

div
(1)
H δcc = A, div

(2)
H δcc = B + 2C,

div
(3)
H δcc = AB + 2D, div

(4)
H δcc = B2 + 2BC + 2AD − 2E,

and, as a recursive formula, we also have that for all j ≥ 2,

(8) div
(2j−1)
H δcc = Bj−2 (AB + 2(j − 1)D) ,

(9) div
(2j)
H δcc = Bj−2

(
B2 + 2BC + 2(j − 1)(AD − E)

)
.
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Remark 4.1. It is clear that there is already a huge difference with the Euclidean case (see

Theorem 2.1). Indeed, we cannot anymore relate the iterated divergences to the symmetric

polynomials of a Hessian matrix. On the other hand, we also have a similarity, namely

the fact that, despite their definition, the iterated divergences can still be expressed only

by means of second order derivatives of δcc with respect to the vector fields X1, X2 and

X3.

We also want to stress that the natural candidate for a notion of horizontal Gaussian

curvature would now be the term div
(2)
H δcc. We want to point out that this term is very

close to the one found in [5] as a limit of the Riemannian sectional curvature: in the

notation of Theorem 1.2, the object found in [5] is given by B + C.

Remark 4.2. We know by Theorem 4.1 that the cc-signed distance function δcc is smooth

only away from the characteristic set. Therefore Theorem 1.2 must be read as a formal

result, which will hold where δcc is smooth enough to allow the computations there involved,

see Remark 4.4.

The proof of Theorem 1.2 is quite technical and, as in the Euclidean case, relies on

several identities that can be deduced directly from the eikonal equation. In order to

streamline the exposition here, we will not write them explicitly but we refer to [4, Section

4] for all the details.

The validity of the eikonal equation is another delicate and crucial issue. A deep and

far more general result contained in [19] states that the cc-signed distance function δcc

satisfies the natural Heisenberg analog of the eikonal equation.

Theorem 4.2. ([19])The Carnot-Carathéodory signed distance function δcc satisfies the

eikonal equation almost everywhere, namely

‖∇Hδcc‖H = 1, a.e. in H.

It is then quite clear that all the tools necessary in R3 are available in H as well. The

main differences come from the local regularity of the cc-signed distance function δcc and

from the fact that the iterated divergences do not identically vanish after some iterations.

In particular, the regularity of the cc-signed distance function δcc forces us to look for a
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localized Steiner formula. To be more precise, we will construct a very specific localizing

set Q where the cc-signed distance function δcc is smooth. For sake of completeness, we

will briefly sketch the construction of the set Q, but we refer to [4, Section 3.1] for all

the details. Let U0 be an open subset of ∂Ω such that dist (U0, char(∂Ω)) > 0. Then, by

Theorem 4.1, there exists an open neighborhood U of U0 in H, with U0 ⊂ U , such that

δcc is smooth in U . It is clear that d0 := dist(U0, ∂U) > 0.

Remark 4.3. The set {g ∈ H : δcc(g) = 0} ∩ U is really a manifold. Indeed, by Theorem

4.1 combined with the regularity assumptions on ∂Ω, δcc is C∞-smooth on ∂Ω ∩ U , and

therefore the eikonal equation ‖∇Hδcc‖H = 1, holds everywhere on ∂Ω ∩ U . Therefore

∇δcc 6= 0, on ∂Ω ∩ U,

otherwise we would have ∇Hδcc = 0 on ∂Ω ∩ U .

Now, for sake of simplicity, let g̃ ∈ U0 ⊂ ∂Ω and let r > 0 such that

B0 := BR3(g̃, r) ∩ ∂Ω,

lies in a connected component of U0. The boundary ∂B0 of B0 can be then parametrized

as follows: γ : [−τ, τ ] −→ ∂B0 for some τ > 0. It is clear that one can easily consider

as B0 a general connected subset of U0, whose boundary components admit a Lipschitz

parametrization. The idea now is to follow the evolution of the set B0 in the direction of

the horizontal normal. Recalling the definition of the horizontal normal N , and the fact

that it vanishes at characteristic points of ∂Ω, we do expect that the time of existence

depends on the distance d0 from char(∂Ω).

Proposition 4.1. There exists s0 > 0 dependent on d0, such that for any g0 ∈ U0 ⊆ ∂Ω,

the Cauchy problem ϕ̇(s) = N(ϕ(s)),

ϕ(0) = g0 ∈ U0,

has a local solution ϕg0 : [−s0, s0]→ U satisfying

dcc(g0, ϕg0(σ)) = |σ| and δcc(ϕg0(σ)) = σ,

for each σ ∈ [−s0, s0].
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Using Proposition 4.1 we can define the localizing set

Q := {ϕg(s) : g ∈ B0, |s| ≤ s0} ,

We may think at this Q as a cylinder-type set which is going inside and outside Ω for

a height equal to s0. For technical reasons we also define

Vε := {p ∈ V : 0 < δcc(p,B0) < ε} and Qε := {p ∈ Q : 0 < δcc(p,B0) < ε} ,

where we are obviously assuming that ε ≤ s0.

Remark 4.4. The cc-signed distance function is smooth in the set Qε, and it is precisely

in Qε where we will use Theorem 1.2. We want also to stress that Proposition 4.1 implies

that the cylinder-type set Qε is foliated by level sets of the cc-signed distance function δcc.

Moreover, on each of these level sets ∇Hδcc is precisely the horizontal normal, and we

have ‖∇Hδcc‖H = 1.

We now focus ourselves only on the set Qε, and we seek for a power series expansion

of its volume. This expression is given by the series (3) stated in the Introduction, and

can be considered as our localized Steiner formula in the first Heisenberg group H. To

simplify the readablilty of the manuscirpt, let us briefly recall the content of Theorem

1.1. Let Ω ⊂ H, ∂Ω, Ωε and δcc and be as before. Let Q be the localizing set previously

defined. Then,

L3(Ωε ∩Q) = L3(Ω ∩Q) +
∑
i≥1

εi

i!

∫
∂Ω∩Q

(div
(i−1)
H δcc) dH3

cc.

Let us now spend the remaining pages to briefly describe the strategy of the proof of

Theorem 1.1. The first step is to show that the volume function ε 7→ L3(Ωε∩Q) is actually

analytic.

Theorem 4.3. ([4, Section 4.2]) The volume function ε 7→ L3(Ωε ∩Q) is real-analytic on

the interval [0, s0].

The proof of Theorem 4.3 is just an application of the recursive formula for the iterated

divergences found in Theorem 1.2.



112 EUGENIO VECCHI

The second step is to determine the relation between the derivatives of the volume function

ε 7→ L3 (Ωε ∩Q)

on the interval [0, s0) and the iterated divergences of δcc, which have been defined in (7).

To this aim, let us define the sequence of derivatives a(i) : [0, s0)→ R by induction:

a(0)(ε) := L3 (Ωε ∩Q) , and a(i+1)(ε) :=

lims↘0
a(i)(s)−a(i)(0)

s
ε = 0,

lims→0
a(i)(ε+s)−a(i)(ε)

s
ε > 0.

The content of the next Theorem is that the above sequence is well-defined and can be

expressed in terms of the iterated divergences of δcc.

Theorem 4.4. ([4, Theorem 3.4])For each integer i ≥ 1 and ε ∈ [0, s0), the limit a(i)(ε)

exists and is given by

a(i)(ε) =

∫
δ−1
cc (ε)∩Q

(div
(i−1)
H δcc) dH3

cc.

Finally, we want to spend a few words on another technical issue related to the proof

of Theorem 1.1. Without any aim of completeness, for which we refer to [4], we point out

that in the proof we also need a slight modification of the following divergence theorem:

Theorem 4.5. ([15]) Let Ω, ∂Ω, ν and νH be as before. Let a, b : H→ R be smooth real

valued functions. Let aX1 + bX2 be a horizontal vector field. Then

(10)

∫
Ω

divH(aX1 + bX2) dL3 =

∫
∂Ω

〈aX1 + bX2, νH〉H dH3
cc.

where dL3 is the 3-dimensional Lebesgue measure.

To be more precise, we need to describe the boundary of certain sets, that we will call

Qs,t, related to Qε. Following [4], for −s0 < s < t < s0, we define

Qs,t := {g ∈ Q : s < δcc(g) < t} = δ−1
cc ((s, t)) ∩Q,
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so that Qε = Q0,ε. We define the initial boundary, the lateral boundary, and the final

boundary of Qs,t by

∂iQs,t := {ϕg(s), g ∈ B0} = δ−1
cc (s) ∩Q,

∂lQs,t := {ϕg(ε) : g ∈ ∂B0, s < ε < t} ,

∂fQs,t := {ϕg(t), g ∈ B0} = δ−1
cc (t) ∩Q.

respectively. As one might expect, it holds that

(11) ∂(Qs,t) = ∂iQs,t ∪ ∂lQs,t ∪ ∂fQs,t.

In order to apply the divergence theorem to the sets Qs,t, we need to identify the horizontal

normal to ∂(Qs,t). First define the vector field µ : ∂(Qs,t)→ R3 by

µ(p) :=


− ∇δcc(p)
||∇δcc(p)||R3

p ∈ ∂iQs,t,

w(p) p ∈ ∂lQs,t,

∇δcc(p)
||∇δcc(p)||R3

p ∈ ∂fQs,t,

where w : ∂lQs,t → R3 is the Euclidean outward unit normal vector to ∂(Qs,t). Then µ is

the Euclidean unit outward-pointing normal vector field to ∂(Qs,t). Denote its projection

onto the horizontal distribution by µH, so that

µH(p) =


− N(p)
||∇δcc(p)||R3

p ∈ ∂iQs,t,

wH(p) p ∈ ∂lQs,t,

N(p)
||∇δcc(p)||R3

p ∈ ∂fQs,t,

where wH is the projection of w onto the horizontal distribution.

We are now able to point out the main technical reason that led to the choice of such a

precise localizing set Q. By construction we have that on the lateral boundary, the vector

wH is perpendicular to the horizontal normal N with respect to the scalar product 〈·, ·〉H.

Lemma 4.1. ([4, Lemma 3.2])Let p ∈ ∂lQs,t. Then

〈N(p), wH(p)〉H = 0.
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As a consequence, we can adopt an ad hoc version of the divergence Theorem previously

recalled.

Proposition 4.2. ([4, Proposition 3.3]) Let c : U → R be a C∞-function and let −s0 <

s < t < s0. Then the vector field cN : U → R3 satisfies∫
Qs,t

divH(cN) dL3 =

∫
δ−1
cc (t)∩Q

c dH3
dcc −

∫
δ−1
cc (s)∩Q

c dH3
dcc .

We want to stress that the construction of the localizing set Q is deeply connected with

the notion of metric normal introduced and deeply studied in [1, 2], and turns out to be

quite efficient to perform explicit computations (e.g [4, Section 5], [13]).
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