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Abstract. We show that the Heisenberg group contains a measure zero set N such

that every real-valued Lipschitz function is Pansu differentiable at a point of N .

Sunto. Proveremo che ogni gruppo di Heisenberg contiene un insieme di misura nulla

tale che ogni funzione lipschitziana ammette almeno un punto di Pansu differenziabilità

al suo interno.
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1. Introduction

In this note we describe the main ideas of a recent result obtained by the authors: in

[19] we constructed a measure zero ‘universal differentiability set’ in the Heisenberg group

(Theorem 2.9). This result was motivated by seemingly disjoint directions of research

extending Rademacher’s theorem on the differentiability of Lipschitz functions.

Rademacher’s theorem states that every Lipschitz function f : Rn → Rm is differentiable

almost everywhere with respect to Lebesgue measure. This result is classical but has

many applications and has inspired much research. One direction of this research is the

extension of Rademacher’s theorem to more general spaces, while another involves finding

points of differentiability in extremely small sets.

A Carnot group is a Lie group whose Lie algebra admits a stratification. This stratifi-

cation decomposes the Lie algebra as a direct sum of finitely many vector spaces; one of

these consists of privileged ‘horizontal directions’ which generate the other directions us-

ing Lie brackets. The Heisenberg group Hn (Definition 2.1) is the simplest non-Euclidean

Carnot group.
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In the celebrated paper [16], Pansu introduced a notion of differentiability modeled on

the geometry of Carnot groups, the so-called Pansu differentiability. Remarkably, Pansu

proved that Lipschitz functions between Carnot groups are Pansu differentiable almost

everywhere with respect to the Haar measure [16]. This extended Rademacher’s theorem

to Lipschitz maps between Carnot groups.

Differentiability and Rademacher-type results are also studied for functions between

Banach spaces. There are versions of Rademacher’s theorem for Gâteaux differentiability

of Lipschitz functions, but the case of the stronger Fréchet differentiability is not fully

understood [13]. Preiss [17] showed that any real-valued Lipschitz function on a Banach

space with separable dual is Fréchet differentiable at a dense set of points. Here the main

idea was that (almost local) maximality of directional derivatives implies differentiability.

Cheeger [4] gave a generalization of Rademacher’s theorem for Lipschitz functions de-

fined on metric spaces equipped with a doubling measure and satisfying a Poincaré in-

equality. This has inspired much research in the area of analysis on metric measure

spaces. Bate [2] showed that Cheeger differentiability is strongly related to existence of

many directional derivatives.

A rather different direction of research asks whether one can find points of differen-

tiability in extremely small sets. In particular, we can ask if Rademacher’s theorem is

sharp: given a set N ⊂ Rn of Lebesgue measure zero, does there exist a Lipschitz function

f : Rn → Rm which is differentiable at no point of N?

If n ≤ m the answer is yes: for n = 1 this is rather easy [20], while the general case

is very difficult and combines ongoing work of multiple authors [1, 6], see also the recent

paper [7].

If n > m the answer to our question is no: there are Lebesgue measure zero sets

N ⊂ Rn such that every Lipschitz function f : Rn → Rm is differentiable at a point of N .

The case m = 1 was a surprising corollary of the techniques of the previously mentioned

result in Banach spaces by Preiss [17]. The case m > 1 were resolved by combining tools

from the Banach space theory with a technique for avoiding porous sets [18]. In all cases,

maximizing directional derivatives had a crucial role.
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Sets N ⊂ Rn containing a point of differentiability for every real-valued Lipschitz

function are now called universal differentiability sets. The argument in [17] was greatly

refined to show that Rn, n > 1, contains universal differentiability sets which are compact

and of Hausdorff dimension one [8, 9]. This was improved to obtain a set which even has

Minkowski dimension one [10].

In the present note we show the main ideas contained in [19] and in particular how to

adapt [17] to the Heisenberg group. The interested reader can find the proofs of all the

results mentioned in the present note in [19]. Our main result is Theorem 2.9 which asserts

the following: there is a Lebesgue measure zero set N ⊂ Hn such that every Lipschitz

function f : Hn → R is Pansu differentiable at a point of N .

2. The Heisenberg Group and Pansu Differentiability

More information on the topics in this section can be found in [3, 5, 12, 15]. Denote

the Euclidean norm and inner product by | · | and 〈·, ·〉 respectively. We represent points

of R2n+1 as triples (a, b, c), where a, b ∈ Rn and c ∈ R.

Definition 2.1. The Heisenberg group Hn is R2n+1 equipped with the non-commutative

group law:

(a, b, c)(a′, b′, c′) = (a+ a′, b+ b′, c+ c′ − 2(〈a, b′〉 − 〈b, a′〉)).

The identity element in Hn is 0 and inverses are given by x−1 = −x.

Definition 2.2. For r > 0 define dilations δr : Hn → Hn by:

δr(a, b, c) = (ra, rb, r2c).

Dilations δr : Hn → Hn and the projection p : Hn → R2n onto the first 2n coordinates

are group homomorphisms, where R2n is considered as a group with the operation of

addition.

As sets there is no difference between Hn and R2n+1. Nevertheless, we sometimes think

of elements of Hn as points and elements of R2n+1 as vectors. Let ei denote the standard

basis vectors of R2n+1 for 1 ≤ i ≤ 2n+ 1. That is, ei has all coordinates equal to 0 except

for a 1 in the i’th coordinate.
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Definition 2.3. For 1 ≤ i ≤ n define vector fields on Hn by:

Xi(a, b, c) = ei + 2bie2n+1, Yi(a, b, c) = ei+n − 2aie2n+1.

Let V = Span{Xi, Yi : 1 ≤ i ≤ n} and ω be the inner product norm on V making

{Xi, Yi : 1 ≤ i ≤ n} an orthonormal basis. We say that the elements of V are horizontal

vector fields or horizontal directions.

An easy calculation shows that if E ∈ V then

x(tE(0)) = x+ tE(x)

for any x ∈ Hn and t ∈ R. That is, ‘horizontal lines’ are preserved by group translations.

If E ∈ V then E(0) is a vector v ∈ R2n+1 with v2n+1 = 0. Conversely, for any such v

there exists E ∈ V such that E(0) = v. If E ∈ V then p(E(x)) is independent of x,

so we can unambiguously define p(E) ∈ R2n. The norm ω is then equivalently given by

ω(E) = |p(E)|.

We now use the horizontal directions to define horizontal curves and horizontal length

in Hn. Let I denote a subinterval of R.

Definition 2.4. An absolutely continuous curve γ : I → Hn is a horizontal curve if there

is h : I → R2n such that for almost every t ∈ I:

γ′(t) =
n∑
i=1

(hi(t)Xi(γ(t)) + hn+i(t)Yi(γ(t))).

Define the horizontal length of such a curve by:

LH(γ) =

∫
I

|h|.

Notice that in Definition 2.4 we have |(p◦γ)′(t)| = |h(t)| for almost every t, so LH(γ) is

computed by integrating |(p◦γ)′(t)|. That is, LH(γ) = LE(p◦γ), where LE is the Euclidean

length of a curve in Euclidean space. It can be shown that left group translations preserve

horizontal lengths of horizontal curves.

By Chow’s Theorem, any two points of Hn can be joined by a horizontal curve of finite

horizontal length. We use this fact to define the Carnot-Carathéodory distance.
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Definition 2.5. Define the Carnot-Carathéodory distance d on Hn by:

d(x, y) = inf{LH(γ) : γ is a horizontal curve joining x to y}.

Denote d(x) = d(x, 0) and BH(x, r) := {y ∈ Hn : d(x, y) < r}.

It is known that geodesics exist in the Heisenberg group. That is, the infimum in

Definition 2.5 is actually a minimum. The Carnot-Carathéodory distance respects the

group law and dilations - for every g, x, y ∈ Hn and r > 0:

• d(gx, gy) = d(x, y),

• d(δr(x), δr(y)) = rd(x, y).

Notice d(x, y) ≥ |p(y)− p(x)|, since the projection of a horizontal curve joining x to y

is a curve in R2n joining p(x) to p(y).

The Carnot-Carathéodory distance and the Euclidean distance are topologically equiv-

alent but not Lipschitz equivalent. However, they are Hölder equivalent on compact sets.

If f : Hn → R or γ : R→ Hn we denote the Lipschitz constant (not necessarily finite) of

f or γ with respect to d (in the domain or target respectively) by LipH(f) and LipH(γ). If

we use the Euclidean distance then we use the notation LipE(f) and LipE(γ). Throughout

this note ‘Lipschitz’ means with respect to the Carnot-Carathéodory distance if the do-

main or target is Hn, unless otherwise stated. For horizontal curves we have the following

relation between Lipschitz constants.

Lemma 2.6. Suppose γ : I → Hn is a horizontal curve. Then:

LipH(γ) = LipE(p ◦ γ).

Lebesgue measure L2n+1 is the natural Haar measure on Hn. It is compatible with

group translations and dilations - for every g ∈ Hn, r > 0 and A ⊂ Hn:

• L2n+1({gx : x ∈ A}) = L2n+1(A),

• L2n+1(δr(A)) = r2n+2L2n+1(A).

Definition 2.7. A function L : Hn → R is H-linear if L(xy) = L(x)+L(y) and L(δr(x)) =

rL(x) for all x, y ∈ Hn and r > 0.
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Let f : Hn → R and x ∈ Hn. We say that f is Pansu differentiable at x if there is a

H-linear map L : Hn → R such that:

lim
y→x

|f(y)− f(x)− L(x−1y)|
d(x, y)

= 0.

In this case we say that L is the Pansu derivative of f .

Clearly a H-linear map is Pansu differentiable at every point. Pansu’s theorem is the

natural version of Rademacher’s theorem in Hn.

Theorem 2.8 (Pansu). A Lipschitz function f : Hn → R is Pansu differentiable Lebesgue

almost everywhere.

We can now state our main result.

Theorem 2.9. There is a Lebesgue measure zero set N ⊂ Hn such that every Lipschitz

function f : Hn → R is Pansu differentiable at a point of N .

The set N in Theorem 2.9 is called a universal differentiability set. Similar results are

known for Lipschitz maps f : Rn → Rm with n > m, but Theorem 2.9 is the first such

result outside the Euclidean setting.

3. Maximality of directional derivatives implies Pansu differentiability

We now define directional derivatives in horizontal directions (Definition 3.1) and com-

pare them to the Lipschitz constant (Lemma 3.2). We discuss how the origin can be

joined to other points by relatively simple curves (Lemma 3.3). These are the tools used

to prove (Theorem 3.4), which states that existence of a maximal horizontal directional

derivative implies Pansu differentiability.

Definition 3.1. Let f : Hn → R be a Lipschitz function and E ∈ V . Define

Ef(x) := lim
t→0

f(x+ tE(x))− f(x)

t
.

whenever it exists.
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If E ∈ V then the horizontal line γ(t) = x + tE(x) is a Lipschitz map from R into

Hn and the composition f ◦ γ : R → R is Lipschitz, so differentiable almost everywhere.

Hence Lipschitz functions have many directional derivatives in horizontal directions.

Directional derivatives give precise information about what happens on small scales in

some direction, while the Lipschitz condition gives information about arbitrary directions

on large scales. It is useful to have some connection between the two. For this, we

recall that the Lipschitz constant of a function between Euclidean spaces is given by the

supremum of directional derivatives over directions of Euclidean length 1. We now give a

similar statement for the Carnot-Carathéodory distance.

Lemma 3.2. Suppose f : Hn → R is Lipschitz. Then:

LipH(f) = sup{|Ef(x)| : x ∈ Hn, E ∈ V, ω(E) = 1, Ef(x) exists}.

Lemma 3.2 is easy to prove using the Fundamental Theorem of Calculus along curves.

Lemma 3.3. Let a, b ∈ Rn and c ∈ R. Suppose (a, b) 6= (0, 0) and let L = |(a, b)|. Then

there is a Lipschitz horizontal curve γ joining (0, 0, 0) ∈ Hn to (a, b, c) ∈ Hn, which is a

concatenation of two line segments, such that:

(1) LipH(γ) ≤ L
(

1 + c2

L4 + 4c2

L2

) 1
2
,

(2) γ′(t) exists and |γ′(t)− (a, b, 0)| ≤ c
L

(1 + 4L2)
1
2 for t ∈ [0, 1] \ {1/2} .

To prove Lemma 3.3 one uses the characterization of horizontal curves in Hn as lifts

of curves in R2n [3]. The height of the final coordinate is determined by various areas

described by the curve in R2n. For the curve in Lemma 3.3, using two line segments in

R2n before lifting to Hn allows one to specify these areas and hence reach the correct

vertical coordinate.

The following Theorem is an adaptation to the Heisenberg group of [11, Theorem 2.4].

By Lemma 3.2, existence of a maximal horizontal directional derivative is equivalent to

the agreement of a directional derivative with the Lipschitz constant.

Theorem 3.4. Let f : Hn → R be Lipschitz, x ∈ Hn and E ∈ V with ω(E) = 1. Suppose

Ef(x) exists and Ef(x) = LipH(f). Then f is Pansu differentiable at x with derivative

L(x) := LipH(f)〈x,E(0)〉 = LipH(f)〈p(x), p(E)〉.
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While the proof of Theorem 3.4 in [19] is really direct, the rough idea is as follows. If f

is not Pansu differentiable at x, then there is a nearby point y such that f(y)−f(x) is too

large. We then consider a curve joining a point x−tE(x) to y which is a group translation

of the curves constructed in Lemma 3.3. If t is relatively large, the length of this curve is

very close to t. Hence the Lipschitz constant gives an upper bound on f(y)−f(x−tE(x)).

However, f(x)− f(x− tE(x)) is large because Ef(x) = LipH(f) is a maximal directional

derivative and f(y) − f(x) is large due to the failure of differentiability. This gives a

contradiction.

4. The universal differentiability set and almost maximality implies

Pansu differentiability

A general Lipschitz function may not have a maximal directional derivative in the sense

of Theorem 3.4, especially inside a null set. In this section we identify our measure zero

universal differentiability set (Lemma 4.1) and discuss almost maximal directional deriva-

tives which are enough to prove Pansu differentiability (Theorem 4.3). The argument is

based on that of [17, Theorem 4.1], but using horizontal curves and directional derivatives

in horizontal directions.

If y ∈ Hn with p(y) 6= 0, let γy be the curve constructed in Lemma 3.3 joining 0 to y.

Recall that a set in a topological space is Gδ if it is a countable intersection of open sets.

Lemma 4.1. There is a Lebesgue measure zero Gδ set N ⊂ Hn containing all straight

lines which are also horizontal curves and join pairs of points of Q2n+1. Any such set

contains the image of:

(1) the line x + tE(x) whenever x ∈ Q2n+1 and E ∈ V is a linear combination of

{Xi, Yi : 1 ≤ i ≤ n} with rational coefficients,

(2) all curves of the form xγy for x, y ∈ Q2n+1 with p(y) 6= 0.

Notation 4.2. Fix a Lebesgue null Gδ set N ⊂ Hn as in Lemma 4.1 for the remainder

of the note. For any Lipschitz function f : Hn → R define:

Df := {(x,E) ∈ N × V : ω(E) = 1, Ef(x) exists}.
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We now make precise the idea that almost maximality suffices for differentiability. For

true maximality one should compare a fixed directional derivative with all directional

derivatives using pairs in Df . Instead, we use a subcollection of pairs with the property

that changes in slopes are bounded by changes in directional derivatives.

Theorem 4.3. Let f : Hn → R be a Lipschitz function with LipH(f) ≤ 1/2. Suppose

(x∗, E∗) ∈ Df . Let M denote the set of pairs (x,E) ∈ Df such that Ef(x) ≥ E∗f(x∗)

and

|(f(x+ tE∗(x))− f(x))− (f(x∗ + tE∗(x∗))− f(x∗))|

≤ 6|t|((Ef(x)− E∗f(x∗))LipH(f))
1
4

for every t ∈ (−1, 1). If

lim
δ↓0

sup{Ef(x) : (x,E) ∈M and d(x, x∗) ≤ δ} ≤ E∗f(x∗)

then f is Pansu differentiable at x∗ with Pansu derivative

L(x) = E∗f(x∗)〈x,E∗(0)〉 = E∗f(x∗)〈p(x), p(E∗)〉.

The proof of Theorem 4.3 is by contradiction. The idea is to first modify the line

x∗ + tE∗(x∗) to form a Lipschitz horizontal curve g in N which passes through a nearby

point showing non-Pansu differentiability at x∗. Then, by applying a suitable mean value

type theorem (see [17, Lemma 3.4]) it is possible to obtain a large directional derivative

along g and estimates for difference quotients in the new direction. Finally, these estimates

have to be improved to show that the new point and direction form a pair in M . This

shows that there is a nearby pair in M giving a larger directional derivative than (x∗, E∗),

a contradiction.

5. Construction of an almost maximal directional derivative and Proof

of Theorem 2.9

We now state Theorem 5.1 and we prove Theorem 2.9. Theorem 5.1 shows that given

a Lipschitz function f0 : Hn → R, there is a Lipschitz function f : Hn → R such that

f − f0 is H-linear and f has an almost locally maximal horizontal directional derivative
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in the sense of Theorem 4.3. We will conclude that any Lipschitz function f0 is Pansu

differentiable at a point of N , proving Theorem 2.9.

Recall the measure zero Gδ set N and the notation Df fixed in Notation 4.2. In

particular, the statement (x,E) ∈ Df implies that x ∈ N . Note that if f − f0 is H-

linear then Df = Df0 and also the functions f and f0 have the same points of Pansu

differentiability.

Theorem 5.1. Suppose f0 : Hn → R is a Lipschitz function, (x0, E0) ∈ Df0 and

δ0, µ,K > 0. Then there is a Lipschitz function f : Hn → R such that f − f0 is H-

linear with LipH(f − f0) ≤ µ, and a pair (x∗, E∗) ∈ Df with d(x∗, x0) ≤ δ0 such that

E∗f(x∗) > 0 is almost locally maximal in the following sense.

For any ε > 0 there is δε > 0 such that whenever (x,E) ∈ Df satisfies both:

(1) d(x, x∗) ≤ δε, Ef(x) ≥ E∗f(x∗),

(2) for any t ∈ (−1, 1):

|(f(x+ tE∗(x))− f(x))− (f(x∗ + tE∗(x∗))− f(x∗))|

≤ K|t|(Ef(x)− E∗f(x∗))
1
4 ,

then:

Ef(x) < E∗f(x∗) + ε.

Proof of Theorem 2.9. Let f0 : Hn → R be a Lipschitz function. Multiplying f0 by a non-

zero constant does not change the set of points where it is Pansu differentiable. Hence we

can assume LipH(f0) ≤ 1/4. Fix an arbitrary pair (x0, E0) ∈ Df0 .

Apply Theorem 5.1 with δ0 = 1, µ = 1/4 and K = 8. This gives a Lipschitz function

f : Hn → R such that f−f0 is H-linear with LipH(f−f0) ≤ 1/4 and a pair (x∗, E∗) ∈ Df ,

in particular x∗ ∈ N , such that E∗f(x∗) > 0 is almost locally maximal in the following

sense.

For any ε > 0 there is δε > 0 such that whenever (x,E) ∈ Df satisfies both:

(1) d(x, x∗) ≤ δε, Ef(x) ≥ E∗f(x∗),
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(2) for any t ∈ (−1, 1):

|(f(x+ tE∗(x))− f(x))− (f(x∗ + tE∗(x∗))− f(x∗))|

≤ 8|t|(Ef(x)− E∗f(x∗))
1
4 ,

then:

Ef(x) < E∗f(x∗) + ε.

Combining LipH(f0) ≤ 1/4 and LipH(f − f0) ≤ 1/4 gives LipH(f) ≤ 1/2. Notice that

(x∗, E∗) is also almost locally maximal in the sense of Theorem 4.3, since the restriction

on pairs above is weaker than that in Theorem 4.3. Hence Theorem 4.3 implies that f is

Pansu differentiable at x∗ ∈ N . A H-linear function is Pansu differentiable everywhere.

Consequently f0 is Pansu differentiable at x∗, proving Theorem 2.9. �
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[8] Doré, M., Maleva, O.: A compact null set containing a differentiability point of every Lipschitz

function, Math. Ann. 351(3) (2011), 633–663.
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