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Abstract. In this paper we study the existence of a positive weak solution for a class of
nonlocal equations under Dirichlet boundary conditions and involving the regional frac-
tional Laplacian operator, given by

(−∆)su(x) := −
∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy , x ∈ Rn ,

where s ∈ (0, 1) is fixed and n > 2s. More precisely, exploiting direct variational methods,
we prove a characterization theorem on the existence of one weak solution for the nonlocal
elliptic problem 

(−∆)su = λf(u) in Ω
u > 0 in Ω
u = 0 in Rn \ Ω,

where the nonlinear term f is a suitable continuous function and Ω ⊂ Rn is open, bounded
and with smooth boundary ∂Ω. Our result extends to the fractional setting some theorems
obtained recently for ordinary and classical elliptic equations, as well as some characteriza-
tion properties proved for differential problems involving different elliptic operators. With
respect to these cases studied in literature, the nonlocal one considered here presents some
additional difficulties, so that a careful analysis of the fractional spaces involved is neces-
sary, as well as some nonlocal Lq-estimates, recently proved in the nonlocal framework.
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1. Introduction

One of the most celebrated applications of critical point theory (see [1, 23, 24, 34, 35])
consists in the construction of nontrivial solutions of semilinear equations: in this context,
the solutions are constructed with a variational method by a minimax procedure on the
associated energy functional.

There is a huge literature on these classical topics, and, in recent years, also a lot of papers
related to the study of fractional and nonlocal operators of elliptic type, through critical
point theory, appeared. Indeed, a natural question is whether or not these techniques may
be adapted in order to investigate the fractional analogue of the classical elliptic case. The
answer is yes, even if the variational approach has to be adapted to the nonlocal setting.
For this we refer to the recent book [15], which is dedicated to the analysis of fractional
elliptic problems, via classical variational methods and other novel approaches.

The interest shown in the literature for nonlocal operators and problems is due both
for the pure mathematical research and to their applications in a wide range of contexts,
such as the thin obstacle problem, optimization, finance, phase transitions, stratified ma-
terials, anomalous diffusion, crystal dislocation, soft thin films, semipermeable membranes,
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flame propagation, conservation laws, ultra-relativistic limits of quantum mechanics, quasi-
geostrophic flows, multiple scattering, minimal surfaces, materials science, water waves, just
to name a few.

In this paper we focus our attention on fractional nonlocal problems studied through
variational and topological methods. To be more precise, we consider the following nonlocal
eigenvalue problem

(1.1)

 (−∆)su = λf(u) in Ω
u > 0 in Ω
u = 0 in Rn \ Ω,

where s ∈ (0, 1) is a fixed parameter, Ω ⊂ Rn is a bounded domain with Lipschitz boundary
∂Ω, n > 2s, f : R → R is a continuous function satisfying suitable regularity and growth
conditions, and λ denotes a positive real parameter. Here (−∆)s is the fractional Laplace
operator defined, up to a normalization factor, by the Riesz potential as

(1.2) (−∆)su(x) := −
∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy , x ∈ Rn ,

see [10, 15] for further details. Note that in (1.1) the homogeneous Dirichlet datum is
given in Rn \ Ω and not simply on ∂Ω, as it happens in the classical case of the Laplacian,
consistently with the nonlocal character of the operator (−∆)s .

Alternatively, following the work of Caffarelli and Silvestre [9], the fractional Laplacian
operator in the whole space Rn can be defined as a Dirichlet to a Neumann map:

(−∆)su(x) := −κs lim
y→0+

y1−2s∂w

∂y
(x, y),

where κs is a suitable constant and w is the s-harmonic extension of a smooth function u.
In other words, w is the function defined on the upper half-space Rn+1

+ := Rn × (0,+∞)
which is solution to the local elliptic problem{

−div(y1−2s∇w) = 0 in Rn+1
+

w(x, 0) = u(x) in Rn.
In order to define the fractional Laplacian operator in bounded domains, the above

procedure has been adapted in [6, 8]. We point out that two notions of fractional operators
on bounded domains were considered in the literature, namely the one considered in [6,
8] (called also spectral Laplacian operator) and the integral one given in (1.2). In [30,
Theorem 1] the authors compare these two operators by studying their spectral properties
obtaining, as consequence of this careful analysis, that these two operators are different.
We refer also to [12] for an exhaustive study of this comparison.

In the framework of the the spectral Laplacian, the problem considered here has been
treated in [14] by using the extension method and the Dirichlet to a Neumann map. With
respect to this case, problem (1.1) presents some additional technical difficulties and to
make the nonlinear methods work, some careful analysis of the fractional spaces involved is
necessary.

Problem (1.1) has a variational structure and the natural space where finding solutions
for it is a closed linear subspace of the classical fractional Sobolev space Hs(Rn). Indeed,
in order to give the weak formulation of problem (1.1), we need to work in a special func-
tional space, which allows us to encode the Dirichlet boundary condition in the variational
formulation. We would note that, with this respect, the standard fractional Sobolev spaces
are not enough in order to study the problem, and so, we overcome this difficulty working
in a new functional space, whose definition will be recalled in Section 2.

1.1. Main results of the paper. Throughout this paper we suppose that f : [0,+∞)→ R
is a continuous function satisfying the following sign condition

(1.3) f(0) = 0 and f(ξ) ≥ 0 for any ξ ∈ (0,+∞).



AN EIGENVALUE PROBLEM FOR NONLOCAL EQUATIONS 71

Furthermore, let h : (0,+∞)→ [0,+∞) be the map defined by

h(ξ) :=
F (ξ)

ξ2
,

where

F (ξ) :=

∫ ξ

0
f(t)dt,

for each ξ ∈ [0,+∞). We will suppose that

(1.4) there exists a > 0 such that h is non-increasing in the interval (0, a].

Note that assumptions (1.3) and (1.4) are the natural ones, when dealing with elliptic
differential equations driven by the Laplace operator (or, more generally, by uniformly
elliptic operators) with homogeneous Dirichlet boundary conditions (see, for instance, [2,
13, 25]).

In the sequel saying that f is a subcritical function means that

|f(ξ)| ≤ C(1 + |ξ|ν)

for some 1 ≤ ν ≤ 2∗s − 1 and C > 0, where 2∗s := 2n/(n− 2s) denotes the fractional critical
Sobolev exponent.

The main result of the present paper gives a necessary and sufficient condition for the
existence of solutions for problem (1.1), as stated here below (here by λ1,s we denote the
first eigenvalue of (−∆)s with homogeneous Dirichlet boundary data, see Subsection 2.2):

Theorem 1. Let s ∈ (0, 1), n > 2s and Ω be an open bounded set of Rn with Lipschitz
boundary ∂Ω. Further, let f : [0,+∞) → R be a function satisfying hypotheses (1.3) and
(1.4). Then, the following assertions are equivalent:

(h1) h is not constant in (0, b] for any b > 0;
(h2) f is subcritical with lim

ξ→0+
h(ξ) > 0 and for each r > 0 there exists εr > 0 such that

for every

λ ∈

 λ1,s

2 lim
ξ→0+

h(ξ)
,

λ1,s

2 lim
ξ→0+

h(ξ)
+ εr

 ,

the nonlocal problem (1.1) has a weak solution uλ ∈ Hs(Rn) such that uλ = 0 in
R \ Ω, and

(1.5)

(∫
Rn×Rn

|uλ(x)− uλ(y)|2

|x− y|n+2s
dxdy

)1/2

< r.

Note that if lim
ξ→0+

h(ξ) = +∞, condition (h2) assumes the simple form

(h′2) f is subcritical and for each r > 0 there exists εr > 0 such that for every λ ∈ (0, εr) ,
the nonlocal problem (1.1) has a weak solution uλ ∈ Hs(Rn) such that uλ = 0 in
R \ Ω, and (1.5) holds true.

Theorem 1 is inspired by [25, Theorem 1], which is related to a two-point boundary
value problem in the one-dimensional case. In the higher dimensional setting the method
performed in [25] cannot be directly used for treating elliptic equations driven by the classical
Laplacian operator. In such a case a different proof, again based on critical point methods,
was developed in [2, Theorem 1]. The extension of the cited result to nonlocal spectral
equations has been developed in [14]. We also notice that in [13] a similar variational
approach was adopted in order to study elliptic equations involving the weak Laplacian
operator defined on self-similar fractal domains, whose simple prototype is the Sierpiński
gasket.

The proof of Theorem 1 is based on variational and topological techniques. Moreover,
one of the main tool used along the proof is a regularity result for the first eigenfunction
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associated to a linear fractional problem (see [30, Theorem 1]), as well as an a-priori estimate
for solutions of nonlocal equations in terms of the data, recently obtained in [20, Lemma 2.3],
which extends the well known ones for the standard Laplacian case (see Proposition 3 and
Lemma 2 in Section 2). We make also use of the Strong Maximum Principle for the fractional
Laplacian operator, proved in [33, Proposition 2.2.8], and the properties of the spectrum
σ((−∆)s) of the fractional Laplace operator obtained in [11, Proposition 2.1].

Our result extends to the nonlocal setting recent theorems got in the setting of ordinary
and classical elliptic equations, as well as a characterization for elliptic problems on certain
non-smooth domains (see the papers [2, 13, 14, 25]). In particular we notice that Theo-
rem 1 can be viewed as the fractional counterpart of the classical elliptic case proved in [2,
Theorem 1] by means of variational and topological methods.

For the sake of completeness we mention that in the literature there are many existence,
non-existence and multiplicity results about nonlocal problems involving fractional Lapla-
cian operators obtained with different methods and approaches (see, among others, the
papers [3, 4, 16, 17, 18] and [19, 21, 22, 36], as well as the references therein).

The present paper is organized as follows. In Section 2 we collect some properties of the
fractional Laplacian operator in a bounded domain, as well as we give some basic notions
on the fractional Sobolev framework adopted here. Section 3 is devoted to the proof of
Theorem 1. Finally, in Section 4 an example of an application is presented, together with
some final comments.

2. Preliminaries

In this section we briefly recall some results useful along the paper. As we said in
the Introduction, in order to give a variational formulation of problem (1.1), we need to
consider a suitable functional space. Here we start by recalling the definition of the fractional
functional space Xs

0 , firstly introduced in [27, 28]. The reader familiar with this topic may
skip this section and go directly to the next one.

The functional space Xs denotes the linear space of Lebesgue measurable functions g
from Rn to R such that the restriction of g to Ω belongs to L2(Ω) and

(x, y) 7→ g(x)− g(y)

|x− y|
n+2s

2

∈ L2
(
(Rn × Rn) \ (CΩ× CΩ), dxdy

)
,

where CΩ := Rn \ Ω. We denote by Xs
0 the following linear subspace of Xs

Xs
0 :=

{
g ∈ Xs : g = 0 a.e. in Rn \ Ω

}
.

We remark thatXs andXs
0 are non-empty, since C2

0 (Ω) ⊆ Xs
0 by [27, Lemma 5.1]. Moreover,

the space Xs is endowed with the norm defined as

‖g‖Xs := ‖g‖L2(Ω) +
(∫

Q

|g(x)− g(y)|2

|x− y|n+2s
dxdy

)1/2
,

where Q := (Rn × Rn) \ (CΩ× CΩ). It is easily seen that ‖ · ‖Xs is a norm on Xs, see [28].
By [28, Lemma 6 and Lemma 7] in the sequel we can take the function

(2.1) Xs
0 3 v 7→ ‖v‖Xs

0
:=

(∫
Q

|v(x)− v(y)|2

|x− y|n+2s
dxdy

)1/2

as a norm on Xs
0 . Also,

(
Xs

0 , ‖ · ‖Xs
0

)
is a Hilbert space with scalar product

〈u, v〉Xs
0

:=

∫
Q

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dxdy,

see [28, Lemma 7]. Note that in (2.1) (and in the related scalar product) the integral can
be extended to all Rn × Rn, since v ∈ Xs

0 (and so v = 0 a.e. in Rn \ Ω).
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Further, by [32, Lemma 7] the space Xs
0 consists of all the functions in Hs(Rn) which

vanish a.e. outside Ω, i.e.

Xs
0 =

{
u ∈ Hs(Rn) : u = 0 in Rn \ Ω

}
,

where Hs(Rn) denotes the usual fractional Sobolev space endowed with the norm (the
so-called Gagliardo norm)

‖g‖Hs(Rn) = ‖g‖L2(Rn) +
(∫

Rn×Rn

|g(x)− g(y)|2

|x− y|n+2s
dxdy

)1/2
.

Finally, we recall the embedding properties of Xs
0 into the usual Lebesgue spaces (see

[28, Lemma 8]). The embedding j : Xs
0 ↪→ Lν(Rn) is continuous for any ν ∈ [1, 2∗s], while it

is compact whenever ν ∈ [1, 2∗s).
For further details on the fractional Sobolev spaces we refer to [10] and to the references

therein, while for other details on Xs and Xs
0 we refer to [27], where these functional spaces

were introduced, and also to [15, 26, 28, 29, 32], where various properties of these spaces
were proved.

2.1. Weak solutions. For the sake of completeness, here we recall that if g : R → R is a
subcritical continuous function, by a weak solution for the following nonlocal problem

(2.2)

{
(−∆)su = g(u) in Ω
u = 0 in Rn \ Ω,

we mean a function u : Rn → R such that
∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy =

∫
Ω
g(u(x))ϕ(x) dx ∀ϕ ∈ Xs

0

u ∈ Xs
0 .

We observe that problem (2.2) has a variational structure, indeed it is the Euler-Lagrange
equation of the functional J : Xs

0 → R defined as follows

J (u) :=
1

2

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy −

∫
Ω

(∫ u(x)

0
g(t)dt

)
dx .

Notice that the functional J is well defined and Fréchet differentiable at u ∈ Xs
0 and its

Fréchet derivative at u is given by

J ′(u)(ϕ) =

∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy −

∫
Ω
g(u(x))ϕ(x) dx ,

for any ϕ ∈ Xs
0 . Thus, critical points of J are solutions to problem (2.2). By using the

above remarks, in order to prove Theorem 1 we will use critical point methods and regularity
arguments.

Finally, we recall that weak solutions of the equation{
(−∆)su = k(x) in Ω
u = 0 in Rn \ Ω,

with k ∈ Lq(Ω), enjoy the natural Lq-estimates given in the following lemma (for a detailed
proof we refer to [20, Lemma 2.3]):

Lemma 2. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary and let u ∈ Xs
0 be

such that

〈u, ϕ〉Xs
0

=

∫
Ω
k(x)ϕ(x)dx

for every ϕ ∈ Xs
0 , where k ∈ Lq(Ω) and q >

n

2s
.
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Then, u ∈ L∞(Ω) and

‖u‖L∞(Ω) ≤Mq‖k‖Lq(Ω)

for some positive constant Mq = M(n, s,Ω, q).

2.2. Eigenfunctions and eigenvalues of (−∆)s. In order to prove the main result of the
present paper, we need also to exploit the nonlocal eigenvalue problem

(2.3)

{
(−∆)su = λu in Ω
u = 0 in Rn \ Ω,

related to the operator (−∆)s.
A spectral theory for general integrodifferential nonlocal operators was developed in [29,

Proposition 9 and Appendix A]: see also [26] for further properties of the spectrum and its
associated eigenfunctions. With respect to the eigenvalue problem (2.3), we recall that it
possesses a divergent sequence of eigenvalues

0 < λ1,s < λ2,s ≤ · · · ≤ λk,s ≤ λk+1,s ≤ . . . .

As usual, in what follows we will denote by ek,s the eigenfunction related to the eigenvalue
λk,s, k ∈ N. From [29, Proposition 9], we know that we can choose

{
ek,s
}
k∈N normalized in

such a way that this sequence provides an orthonormal basis in L2(Ω) and an orthogonal
basis in Xs

0 , so that for any k, i ∈ N with k 6= i

〈ek,s, ei,s〉Xs
0

= 0 =

∫
Ω
ek,s(x)ei,s(x) dx

and

‖ek,s‖2Xs
0

= λk,s‖ek,s‖2L2(Ω) = λk,s.

Furthermore, by [29, Proposition 9 and Appendix A], we have the following characterization
of the first eigenvalue λ1,s:

(2.4) λ1,s = min
u∈Xs

0\{0}

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy∫

Ω
|u(x)|2dx

,

see also [11] for related topics.
In the sequel it will be useful the following regularity result for the eigenfunctions of

(−∆)s, proved in [30, Theorem 1] (see also [26, Proposition 2.4]):

Proposition 3. Let e ∈ Xs
0 and λ > 0 be such that

〈e, ϕ〉Xs
0

= λ

∫
Ω
e(x)ϕ(x)dx,

for every ϕ ∈ Xs
0 .

Then, e ∈ C0,α(Ω̄) for some α ∈ (0, 1), i.e. the function e is Hölder continuous up to the
boundary.

Finally, we recall that in [31, Corollary 8] the authors proved that the first eigenfunction
e1,s ∈ Xs

0 is strictly positive in Ω.

3. Proof of Theorem 1

This section is devoted to the proof of the main result of the present paper. At this
purpose we have to show that assertions (h1) and (h2) are equivalent. For this, let

ā := sup
{
η > 0 : h is non-increasing in (0, η]

}
∈ (0,+∞].
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3.1. Condition (h1) is sufficient for (h2). We consider separately the two different cases
ā = +∞ and ā < +∞.
Case 1: ā = +∞. In this setting h is non-increasing in the half-line (0,+∞). Let us
denote by σ1 and σ2 the following limits

(3.1) lim
ξ→0+

h(ξ) = σ1 and lim
ξ→+∞

h(ξ) = σ2 .

Since h is non-negative, σ1 ≥ 0 and σ2 ≥ 0. Moreover, since condition (h1) holds, it follows
that σ1 > σ2 and σ2 < +∞. Hence, σ1 > 0. Therefore, one has that the interval

I :=

(
λ1,s

2σ1
,
λ1,s

2σ2

)
6= ∅.

Now, let us to show that for every λ ∈ I problem (1.1) has a weak solution in the Hilbert
space Xs

0 . To this end, we first extend f to the whole real axis by putting f(t) = 0 for each
t ∈ (−∞, 0). After that, fix λ ∈ I and define the functional Jλ : Xs

0 → R as follows

(3.2) Jλ(u) :=
1

2

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy − λ

∫
Ω
F (u(x))dx .

Since the function h is non-increasing in (0,+∞), the functional Jλ is well defined,
sequentially weakly lower semicontinuous, coercive and belongs to C1(Xs

0), as we will prove
here below.

• The energy functional Jλ is well defined. By definition of σ2 and the continuity
of F , for any ε > 0 there exists σε > 0 such that

(3.3) F (ξ) ≤ (σ2 + ε)|ξ|2 + σε,

for every ξ ∈ R. Hence, as a consequence of (3.3) and of the embedding properties
of Xs

0 into L2(Ω), we get that Jλ is well defined.
Also, note that, bearing in mind that h is non-increasing in (0,+∞) and f ≡ 0

in (−∞, 0],

(3.4) ξf(ξ) ≤ 2F (ξ) for all ξ ∈ R .

By using the growth condition (3.3) and (3.4), we have

ξf(ξ) ≤ 2F (ξ) ≤ 2(σ2 + ε)|ξ|2 + 2σε, for all ξ ∈ R ,

so that, taking again into account that f ≡ 0 in (−∞, 0), we get

f(ξ) ≤ 2(σ2 + ε)|ξ|+ 2σε
|ξ|

for all ξ ∈ R \ {0}.

Hence, fixing ξ0 > 0, by using the above inequality, it follows that

f(ξ) ≤ 2(σ2 + ε)|ξ|+ 2σε
ξ0

for all |ξ| ≥ ξ0 ,

so that, in conclusion, since f is continuous in R, one has

(3.5) f(ξ) ≤ 2(σ2 + ε)|ξ|+ γ for all ξ ∈ R ,

where

γ := max
|ξ|≤ξ0

f(ξ) +
2σε
ξ0

.

Now, by (3.5) and the embedding properties of Xs
0 into the Lebesgue spaces,

standard arguments easily show that Jλ is Gâteaux differentiable at u ∈ Xs
0 with

continuous Gâteaux derivative given by

J ′λ(u)(ϕ) =

∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy − λ

∫
Ω
f(u(x))ϕ(x)dx
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for any ϕ ∈ Xs
0 . Hence, the functional Jλ is of class C1 in Xs

0 .

• Weakly lower semicontinuity of Jλ. First of all we claim that the functional

u 7→
∫

Ω
F (u(x))dx

is continuous in the weak topology of Xs
0 . Indeed, let {uj}j∈N be a sequence in Xs

0

such that

uj ⇀ u weakly in Xs
0

as j → +∞. Then, by using Sobolev embedding results and [7, Theorem IV.9], up
to a subsequence still denoted by {uj}j∈N, we have that

uj → u strongly in Lν(Ω)

and

uj → u a.e. in Ω

as j → +∞, and it is dominated by some function hν ∈ Lν(Ω), i.e.

(3.6) |uj(x)| ≤ hν(x) a.e. x ∈ Ω for any j ∈ N

for any ν ∈ [1, 2∗s).
Then, by the continuity of F and (3.3) it follows that

F (uj(x))→ F (u(x)) a.e. x ∈ Ω

as j →∞ and

|F (uj(x))| ≤ (σ2 + ε)|uj(x)|2 + σε

≤ (σ2 + ε)|h2(x)|2 + σε ∈ L1(Ω)

a.e. x ∈ Ω and for any j ∈ N . Thus, thanks to the Lebesgue Dominated Convergence
Theorem in L1(Ω), we have that∫

Ω
F (uj(x)) dx→

∫
Ω
F (u(x)) dx

as j →∞, that is the map

u 7→
∫

Ω
F (u(x))dx

is continuous from Xs
0 with the weak topology into R, as claimed.

On the other hand, the map

u 7→ ‖u‖2Xs
0

:=

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy

is lower semicontinuous in the weak topology of Xs
0 . Thus, the functional Jλ is

lower semicontinuous in the weak topology of Xs
0 .

• Coercivity of Jλ. Since λ ∈ I, we clearly have

λ <
λ1,s

2σ2
.

Therefore, we can find % > σ2 such that

(3.7)
λ1,s

2σ1
< λ <

λ1,s

2%
.
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Now, by (3.3) with ε = % − σ2 > 0 and (3.7), we get that for some positive

constant β independent of λ (for instance take β :=
σελ1,s

2%
), we have

λ

∫
Ω
F (u(x))dx ≤ λ%

∫
Ω
|u(x)|2dx+ λσε

≤ λ%

λ1,s
‖u‖2Xs

0
+
σελ1,s

2%

=
λ%

λ1,s
‖u‖2Xs

0
+ β ,

and so

(3.8) Jλ(u) ≥
(

1

2
− λ%

λ1,s

)
‖u‖2Xs

0
− β

for every u ∈ Xs
0 .

In view of (3.7), by (3.8) it follows that

(3.9) Jλ(u)→ +∞,

as ‖u‖Xs
0
→ +∞. Hence, the functional Jλ is coercive in Xs

0 .

• Existence of a (nontrivial) global minimum uλ ∈ Xs
0 for the functional Jλ.

Since Jλ is coercive and weakly lower semicontinuous in Xs
0 , it is easy to see that

it admits a global minimum uλ ∈ Xs
0 .

Let us show that uλ is nontrivial. At this purpose, we observe that the first
eigenfunction e1,s of (−∆)s is in Xs

0 and it is positive in Ω (see [31, Corollary 8]).
Moreover, by Proposition 3, one has that e1,s ∈ C0,α(Ω̄) for some α ∈ (0, 1). Let us
put

ē1,s := max
x∈Ω̄

e1,s(x) ,

so that, thanks to (h1), for every t > 0 we have

h(te1,s(x)) > h(tē1,s) for all x ∈ Ω0 ,

where Ω0 ⊆ Ω is a set of positive Lebesgue measure.
Thus, for any t > 0 we get

(3.10)

Jλ(te1,s) =
t2

2
‖e1,s‖2Xs

0
− λ

∫
Ω
F (te1,s(x))dx

=
t2

2
‖e1,s‖2Xs

0
− λ

∫
Ω
h(te1,s(x))(te1,s(x))2dx

<
t2

2
‖e1,s‖2Xs

0
− λt2h(tē1,s)

∫
Ω
|e1,s(x)|2dx

= t2‖e1,s‖2Xs
0

(
1

2
− λ

λ1,s
h(tē1,s)

)
.

Now, suppose that σ1 < +∞ (see (3.1) for the definition of σ1). Then, for every
ε > 0 there exists a positive constant δε such that for every ζ ∈ (0, δε] we have

σ1 − ε <
F (ζ)

ζ2
< σ1 + ε.

By (3.7) we know that
λ1,s

2λ
< σ1 . Hence, there exists ε̄ > 0 such that

λ1,s

2λ
< σ1 − ε̄ < σ1,
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and so
F (ζ)

ζ2
> σ1 − ε̄ >

λ1,s

2λ

for every ζ ∈ (0, δε̄].
On the other hand, if σ1 = +∞, one has

F (ζ)

ζ2
>
λ1,s

2λ

for ζ sufficiently small. In both cases, there exists t̄ > 0 sufficiently small such that

h(t̄ē1,s) :=
F (t̄2ē1,s)

t̄2ē1,s
>
λ1,s

2λ
.

Consequently, by this and (3.10) we get that Jλ(t̄e1,s) < 0 and so

inf
u∈Xs

0

Jλ(u) < 0 .

This yields that uλ 6≡ 0 in Xs
0 and so the existence of a nontrivial global minimum

for Jλ in Xs
0 is proved.

• Asymptotic behaviour of uλ for λ sufficiently small. We claim that

(3.11) lim
λ→µ+0

‖uλ‖Xs
0

= 0,

where, from now on, for simplicity, we set

µ0 :=
λ1,s

2σ1

(µ0 := 0 if σ1 = +∞). This, of course, completes the proof of (h2) in Case 1.
To prove (3.11), let us take a real sequence {λj}j∈N such that

{λj}j∈N ⊂
(
λ1,s

2σ1
,
λ1,s

2%

)
,

where % is as in (3.7), and

(3.12) lim
j→∞

λj =
λ1,s

2σ1
.

Also, let us denote by uλj the nontrivial global minimum for Jλ in Xs
0 when λ = λj .

For each j ∈ N, we have Jλj (uλj ) < 0. Hence, by this and in view of (3.8), we
get

(3.13) ‖uλj‖
2
Xs

0
<

β(
1

2
− λj%

λ1,s

) .
Observing that, by (3.13),

lim
j→+∞

β(
1

2
− λj%

λ1,s

) =
β(

1

2
− %

2σ1

) ∈ (0,+∞),

we have that the sequence {uλj}j∈N is bounded in Xs
0 . Thus, up to a subsequence

still denoted by {uλj}j∈N, we deduce that there exists u∞ ∈ Xs
0 such that

(3.14) uj ⇀ u∞ weakly in Xs
0

and

(3.15) uλj → u∞ strongly in Lν(Ω)

as j → +∞, for every ν ∈ [1, 2∗s).
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We claim that u∞ ≡ 0 in Xs
0 . Indeed, arguing by contradiction, assume that

u∞ 6≡ 0 in Xs
0 . Now, note that for each ϕ ∈ Xs

0 and j ∈ N, one has

(3.16)

0 = J ′λj (uλj )(ϕ) =

∫
Rn×Rn

(uλj (x)− uλj (y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy

− λj
∫

Ω
f(uλj (x))ϕ(x)dx.

Assume that σ1 is finite (the case σ1 = +∞ is similar). Taking into account
inequality (3.5), (3.14) and (3.15), passing to the limit in (3.16) as j → +∞ we have

(3.17)

0 = J ′µ0(u∞)(ϕ) =

∫
Rn×Rn

(u∞(x)− u∞(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy

− λ1,s

2σ1

∫
Ω
f(u∞(x))ϕ(x)dx,

for every ϕ ∈ Xs
0 . Therefore, u∞ is a nontrivial critical point of Jµ0 , that is u∞ is

a weak solution of the nonlocal problem (1.1) for λ = µ0.
Testing equation (3.17) with ϕ = u∞, by using inequality ξf(ξ) ≤ 2F (ξ) for all

ξ ∈ R, we obtain

(3.18)

0 = ‖u∞‖2Xs
0
− λ1,s

2σ1

∫
Ω
f(u∞(x))u∞(x)dx

≥ ‖u∞‖2Xs
0
− λ1,s

σ1

∫
Ω
F (u∞(x))dx

= ‖u∞‖2Xs
0
− λ1,s

σ1

∫
Ω
h(u∞(x))|u∞(x)|2dx.

Taking into account (h1), relation (3.18) yields

(3.19)

0 ≥ ‖u∞‖2Xs
0
− λ1,s

σ1

∫
Ω
h(u∞(x))|u∞(x)|2dx

> ‖u∞‖2Xs
0
− λ1,s

∫
Ω
|u∞(x)|2dx ,

that is

λ1,s >

∫
Rn×Rn

|u∞(x)− u∞(y)|2

|x− y|n+2s
dxdy∫

Ω
|u∞(x)|2dx

in contradiction with (2.4). Therefore, it must be u∞ ≡ 0 in Xs
0 .

Finally, choosing ϕ = uλj in (3.17), we have

(3.20) ‖uλj‖
2
Xs

0
= λj

∫
Ω
f(uλj (x))uλj (x)dx

for each j ∈ N. Now, note that, by (3.5), (3.12) and the fact that u∞ ≡ 0, the right
hand side in (3.20) converges to 0 as j → +∞. Thus

lim
j→∞

‖uλj‖Xs
0

= 0,

so that (3.11) is proved. This fact concludes the proof of Case 1.

Case 2: ā < +∞. First of all, note that h′(ā) = 0. Thus, the function h0 : (0,+∞)→ R
given by

h0(ξ) :=

{
h(ξ) if ξ ∈ (0, ā]
h(ā) if ξ ∈ (ā,+∞),

is of class C1 and non-increasing in (0,+∞).
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Denote by F0 the function defined as

F0(ξ) :=

{
0 if ξ ∈ (−∞, 0]
h0(ξ)ξ2 if ξ ∈ (0,+∞).

Then, F0 is a C1 function and F0(ξ) = F (ξ) for every ξ ∈ (−∞, ā].
Now, consider the truncated problem

(3.21)

 (−∆)su = λf0(u) in Ω
u > 0 in Ω
u = 0 in Rn \ Ω,

where

f0(ξ) := F ′0(ξ) =

 0 if ξ ∈]−∞, 0]
f(ξ) if ξ ∈ (0, ā]
2h0(ā)ξ if ξ ∈ (ā,+∞).

Note that in the setting of problem (3.21) we have that

sup
{
η > 0 : h0 is non-increasing in (0, η]

}
= +∞ .

• Existence of one weak solution of the truncated problem (3.21). By using
what we did in Case 1, for any r > 0, we can find an open interval

J := (µ0, µ0 + ε0) , ε0 > 0

such that for every λ ∈ J there exists a weak solution uλ ∈ Xs
0 of (3.21), that is for

every ϕ ∈ Xs
0

(3.22)

∫
Rn×Rn

(uλ(x)− uλ(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy = λ

∫
Ω
f0(uλ(x))ϕ(x)dx ,

which satisfies uλ = 0 in Rn \ Ω and

(3.23) ‖uλ‖Xs
0
< r .

• A weak solution of problem (1.1). Our aim consists in proving that uλ is, in fact,
solution of problem (1.1) for suitable values of the parameter λ. At this purpose,
we claim that for any τ > 0 there exists Kτ > 0 such that

(3.24) f0(ξ) ≤ Kτ |ξ|+ τ

for any ξ ∈ R. Indeed, let τ ≥ max
ξ∈[0,ā]

f0(ξ): in this case the claim is obvious by the

definition of f0. Now, assume that τ < max
ξ∈[0,ā]

f0(ξ) and denote by

ξ0 := min{ξ > 0 : f(ξ) = τ} .
Then, by the continuity of f0 and the fact that f0(0) = 0 we deduce that

f0(ξ) < τ for all ξ ∈ [0, ξ0)

and
f0(ξ) ≤ Hτξ for all ξ ∈ [ξ0, ā]

for a suitable positive constant Hτ . Hence, by these inequalities and the definition
of f0 we get that the claim holds true.

By [5, Proposition 2.2] and (3.24) we have that

(3.25) uλ ∈ L∞(Ω) .

Now, fix q >
n

2s
and apply Lemma 2, with k(x) := λf0(uλ(x)), to problem (3.21).

This choice of k is admissible, thanks to (3.24) and (3.25). Thus, we have that there
exists Mq > 0 such that

(3.26) ‖uλ‖L∞(Ω) ≤Mq‖λf0(uλ)‖Lq(Ω).
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Choosing τ :=
ā

2(µ0 + ε0)Mq|Ω|1/q
in (3.24) and using (3.26) we easily obtain

(3.27)
‖uλ‖L∞(Ω) ≤ λMqKτ‖uλ‖Lq(Ω) +

ā

2

≤ (µ0 + ε0)MqKτ‖uλ‖Lq(Ω) +
ā

2
,

for every λ ∈ J .
Fix µ ∈ (0, 1) such that qµ < 2∗s. We have that

(3.28)

‖uλ‖Lq(Ω) :=

(∫
Ω
|uλ(x)|qdx

)1/q

=

(∫
Ω
|uλ(x)|q(1−µ)|uλ(x)|qµdx

)µ/(qµ)

≤
(∫

Ω
‖uλ‖

q(1−µ)
L∞(Ω)|uλ(x)|qµdx

)µ/(qµ)

= ‖uλ‖1−µL∞(Ω)‖uλ‖
µ
Lµq(Ω).

By (3.28) and using the Sobolev embedding Xs
0 ↪→ Lqµ(Ω), one has

‖uλ‖Lq(Ω) ≤ ‖uλ‖
1−µ
L∞(Ω)‖uλ‖

µ
Lγq(Ω)

≤ cqµ‖uλ‖1−µL∞(Ω)‖uλ‖
µ
Xs

0
,

for some positive constant cqµ, so that, combining this inequality with (3.27), we
obtain

(3.29) ‖uλ‖L∞(Ω) ≤ K‖uλ‖
1−µ
L∞(Ω)‖uλ‖

µ
Xs

0
+
ā

2

for any λ ∈ J , for some positive constant K independent of λ. Hence, (3.11) and
(3.29) give that

lim
λ→µ+0

‖uλ‖L∞(Ω) ≤
ā

2
.

As a consequence of this, there exists some ε1 ∈ (0, ε0) such that

(3.30) uλ(x) ≤ ā a.e. x ∈ Ω

for every λ ∈ J ′ := (µ0, µ0 + ε1) .
In conclusion, thanks to (3.30) and the definition of f0, the function uλ ∈ Xs

0 is
a weak solution of problem (1.1) for every λ ∈ J ′. Finally, note that uλ satisfies
(3.23) for any λ ∈ J ′, since ε1 < ε0. This completes the proof of Theorem 1.

3.2. Condition (h1) is necessary for (h2). In order to prove our result we argue by
contradiction. We assume that h is constant in some interval [0, b], that is there exists two
positive constants b and c such that

F (ξ) = cξ2

for every ξ ∈ [0, b]. Consequently, one has

f(ξ) = 2cξ

for every t ∈ [0, b] and assumptions (1.3) and (1.4) are satisfied.
Let {rj}j∈N ⊂ (0,+∞) be a sequence such that lim

j→∞
rj = 0. Then, thanks to (h2), for

every j ∈ N there exists εj > 0 such that for every

λ ∈ Jj := (µ0, µ0 + εj)
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problem (1.1) has a weak solution uλ,j ∈ Xs
0 satisfying ‖uλ,j‖Xs

0
< rj . In particular, we

have

(3.31) lim
j→∞

sup
λ∈Jj
‖uλ,j‖Xs

0
= 0.

Now, since f is subcritical and [5, Proposition 2.2] holds true, we get that uλ,j ∈ L∞(Ω).
Moreover, arguing as in Subsection 3.1, we can find a positive constant K (independent of
j and λ) and µ sufficiently small such that

(3.32) ‖uλ,j‖L∞(Ω) ≤ K‖uλ,j‖
1−µ
L∞(Ω)‖uλ,j‖

µ
Xs

0
+
b

2

for every λ ∈ Jj and j ∈ N.
From (3.31) and (3.32), we deduce that

lim
j→∞

sup
λ∈Jj
‖uλ,j‖L∞(Ω) ≤

b

2
.

In particular, we can fix j0 ∈ N such that

‖uλ,j0‖L∞(Ω) ≤ b

for every λ ∈ Jj0 . Consequently, for every λ ∈ (µ0, µ0 + εj0) we get that

(3.33) 0 ≤ uλ,j0(x) ≤ b a.e. x ∈ Ω

and so uλ,j0 solves the following problem

(3.34)

{
(−∆)su = 2λcu in Ω
u = 0 in Rn \ Ω .

This is a contradiction, since problem (3.34) has solution only for countably many positive
value of the parameter λ (see [11, Proposition 2.1]). The proof of Theorem 1 is now complete.

4. An example and some final comments

In conclusion, in this section we present a direct application of our main result. As a
model for f we can take the nonlinearity

f(ξ) :=
√
ξ for all ξ ∈ [0,+∞).

Indeed, the real function

h(ξ) :=

∫ ξ

0

√
t dt

ξ2
=

2

3
√
ξ

for any ξ ∈ (0,+∞)

is strictly decreasing in (0,+∞).
Hence, Theorem 1 ensures that for each r > 0 there exists εr > 0 such that for every

λ ∈ (0, εr) the nonlocal problem

(4.1)

 (−∆)su = λ
√
u in Ω

u > 0 in Ω
u = 0 in Rn \ Ω

admits a weak solution uλ ∈ Hs(Rn), such that uλ = 0 in Rn \ Ω, and∫
Rn×Rn

|uλ(x)− uλ(y)|2

|x− y|n+2s
dxdy < r2.
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Remark 4. It is easily seen that the statements of Theorem 1 are still true if, instead of
(1.1), we consider the following nonlocal problem

(4.2)

 (−∆)su = λα(x)f(u) in Ω
u > 0 in Ω
u = 0 in Rn \ Ω,

where α : Ω̄→ R is continuous and positive. In such a case, if we set

λ
(α)
1,s := min

u∈Xs
0\{0}

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy∫

Ω
α(x)|u(x)|2dx

,

condition (h2) assumes the form

(h2,α) f is subcritical with lim
ξ→0+

h(ξ) > 0 and for each r > 0 there exists εr > 0 such that

for every

λ ∈

 λ
(α)
1,s

2 lim
ξ→0+

h(ξ)
,

λ
(α)
1,s

2 lim
ξ→0+

h(ξ)
+ εr

 ,

the problem (4.2) has a weak solution uλ ∈ Xs
0 , satisfying ‖uλ‖Xs

0
< r.

We think that an interesting open problem is to study of an analogous version of Theo-
rem 1 for problem (4.2) assuming that α is continuous and sign-changing.
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