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Abstract. We are concerned with the problem of the analytic hypoellipticity; pre-

cisely, we focus on the real analytic regularity of the solutions of sums of squares with

real analytic coefficients. Treves conjecture states that an operator of this type is an-

alytic hypoelliptic if and only if all the strata in the Poisson-Treves stratification are

symplectic. We discuss a model operator, P , (firstly appeared and studied in [3]) having

a single symplectic stratum and prove that it is not analytic hypoelliptic. This yields a

counterexample to the sufficient part of Treves conjecture; the necessary part is still an

open problem.

Sunto. Questo articolo riguarda il problema dell’ipoelliticità analitica; precisamente, si

intende studiare la regolarità analitica reale delle soluzioni di somme di quadrati di campi

a coefficienti reali analitici. La congettura di Treves afferma che un siffatto operatore

è ipoellitico analitico se e solo se tutti i suoi strati di Poisson-Treves risultano essere

simplettici. In questo articolo si presenta un operatore modello P (introdotto e studiato

in [3]) avente uno strato simplettico singolo e si prova che non è analitico ipoellittico,

contraddicendo la parte sufficiente della congettura di Treves. La parte necessaria risulta

essere ancora un problema aperto.
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1. Introduction

This paper is concerned with the problem of the analytic hypoellipticity of a sum of

squares operator

(1) P =
N∑
j=1

Xj(x,D)2,

where Xj(x,D) is a vector field with real analytic coefficients defined in an open set

Ω ⊂ Rn. Precisely, we are interested in studying the analytic regularity of the distribution

solutions to the equation

(2) Pu =
N∑
j=1

Xj(x,D)2u = f,

where u is a distribution in Ω and f ∈ Cω(Ω), the space of all real analytic functions in

Ω.

We say that P is analytic hypoelliptic in Ω if P preserves the analytic singular support;

namely, if for every u ∈ D ′(Ω) and every open set V ⊂ Ω,

Pu ∈ Cω(V ) =⇒ u ∈ Cω(V ).

The problem of the C∞(Ω) hypoellipticity of (2) has been solved completely by L. Hörman-

der in 1967, [20], by proving that P is hypoelliptic if the vector fields defining it verify

the Hörmander condition

(H) The Lie algebra generated by the vector fields and their commutators has dimen-

sion n, equal to the dimension of the ambient space.

We point out that, if the Xj in (1) are C∞ vector fields, the condition (H) is only sufficient

but not necessary in order for P to be C∞ hypoelliptic (see Fedii [14], Morimoto [27]).

However, if the coefficients of the Xj in (1) are analytic, as in the present case, M. Derridj,

[13], showed that then the condition (H) is also necessary for the C∞ hypoellipticity of

P .

Therefore, the analytic setting seems to be a better choice if we are interested in studying

the geometric properties of a sum of squares operator.

As a further step in the analysis of the hypoellipticity of P one may ask if, when condition
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(H) is satisfied, it is analytic hypoelliptic, i.e. if Pu = f , f ∈ Cω(Ω), for a certain

distribution u ∈ D ′(Ω), implies that actually u ∈ Cω(Ω).

In 1972 M. S. Baouendi and C. Goulaouic [4] produced an example of a sum of squares

satisfying condition (H)—and hence C∞ hypoelliptic—which is not analytic hypoelliptic.

Precisely, consider in R3
x,y,t the operator

B = D2
x + x2D2

y +D2
t

and, for a positive ε, the function

u(x, y, t) =

∫ ∞
0

eisy+
√
st−ε

√
s · e−s

x2

2 ds.

Note that u is a C∞ function near the origin and an easy computation shows that

Bu(x, y, t) =

∫ ∞
0

eisy+
√
ste−ε

√
s
(

(D2
x + x2s2 − s)e−s

x2

2

)
ds = 0,

but u(x, y, t) is not analytic at the origin, being

Dk
yu(0, 0, 0) =

∫ ∞
0

ske−ε
√
s ds = 2ε−2(k+1)

∫ ∞
0

q(2k+2)−1e−q dq =

2ε−2(k+1)Γ(2k + 2) = 2ε−2(k+1)(2k + 1)! ≥ 2ε−2(k+1)(k!)2.

In 1996, [40], F. Treves stated a conjecture for the sums of squares of vector fields that

takes into account all the cases known to this date (see [3] for a brief survey on this). The

conjecture requires some work to be stated precisely; see to this end the papers [40], [10],

[41]. In what follows we give a brief, sketchy account of how to formulate it.

Let P be as in (2). Then the characteristic variety of P is Char(P ) = {(x, ξ) |Xj(x, ξ) =

0, j = 1, . . . , N}. This is a real analytic variety and, as such, it can be stratified in real

analytic manifolds, Σi, for i in a family of indices, having the property that for i 6= i′,

either Σi ∩ Σi′ = ∅ or, if Σi ∩ Σi′ 6= ∅, then Σi ⊂ ∂Σi′ .

Next one examines the rank of the restriction of the symplectic form to the analytic

strata Σi. If there is a change of rank of the symplectic form on a stratum, we may add

to the equations of the stratum the equations of the subvariety where there is a change

in rank and stratify the so obtained variety into strata which are real analytic manifolds

where the symplectic form has constant rank.
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In the final step one considers the multiple Poisson brackets of the symbols of the vector

fields. Denote by Xj(x, ξ) the symbol of the j-th vector field. Let I = (i1, i2, . . . , ir), where

ij ∈ {1, . . . , N}. Write |I| = r and define

XI(x, ξ) = {Xi1(x, ξ), {Xi2(x, ξ), {· · · {Xir−1(x, ξ), Xir(x, ξ)} · · · }}}.

r is called the length of the multiple Poisson bracket XI(x, ξ). For each stratum previously

obtained, say Σik, we want that all brackets of length lesser than a certain integer, say `ik

vanish, but that there is at least one bracket of length `ik which is non zero on Σik. One

can show that this makes sense and defines a stratification.

Thus the strata obtained are real analytic manifolds where the symplectic form has

constant rank and where all brackets of the vector fields vanish if their length is < `ik,

and there is at least one microlocally elliptic bracket of length `ik, `ik depending on the

stratum. `ik is also called the depth of the stratum.

We now state Treves’ conjecture:

Conjecture 1 (Treves, [40]). The operator P in (2) is analytic hypoelliptic if and only if

every stratum in the above described stratification is symplectic.

We remark that the above statement is in agreement with a number of known results.

We note that Baouendi-Goulaouic operator does not have a symplectic characteristic

manifold and so one might expect it not to be analytic hypoelliptic. We just would like

to mention that a number of results have been published over the last fifteen years in

agreement with the conjecture. As a non exhaustive and certainly incomplete list we

mention the papers [11], [12], [15], [16], [17], [38], [39] as well as [2], [9], [7], [6], [31].

In [3] Albano-Bove-M. prove that the sufficient part of the Treves conjecture is actually

false by showing a counterexample based on an operator whose stratification has just a

single symplectic stratum. The study of that operator requires a precise semiclassical

analysis of the spectral properties of suitable anharmonic Schrödinger operators.

The purpose of this paper is to discuss a simplified version P of the counterexample in [3];

this choice lead us to consider harmonic oscillators whose spectral properties are explicitly

known. Taking advantage of this, the proof of the non analytic hypoellipticity of P will
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be a little bit shorter. However we refer the reader to [3] for a more general and detailed

discussion of the problem.

Although the operator P we shall consider here is less general than the one presented in [3],

it is enough to get that a symplectic stratification does not imply analytic hypoellipticity,

at least if the dimension of the stratum is ≥ 4. The necessary part of the conjecture, as

far as we know, is still an open problem: If there is a non symplectic stratum, so that

Hamilton leaves appear, then the operator P is not analytic hypoelliptic.

Here is the structure of the paper. In Section 2 we state the result by considering an

operator having a single simplectic stratum.

Section 3 is devoted to the proof of the optimality of the s0 Gevrey regularity. We

construct a solution to P1u = 0 which is not better than Gevrey s0 > 1; hence P is not

analytic hypoelliptic. To obtain u we have to discuss a semiclassical spectral problem for

a stationary Schrödinger equation with a symmetric double well potential depending on

two parameters.

It is known that, since the bottom of the well is quadratic, for very small values of

the Planck constant h the eigenvalues, which are simple and positive, behave like the

eigenvalues of a harmonic oscillator.

2. Statement of the Result

The object of this section is to state the optimal Gevrey regularity result for the operator

(1) P (x,D) = D2
1 +D2

2 + x21
(
D2

3 +D2
4

)
+ x22D

2
3 + x42D

2
4,

First of all we remark that both P is a sum of squares of vector fields with real ana-

lytic coefficients satisfying Hörmander bracket condition, i.e. the whole ambient space is

generated when we take iterated commutators of the vector fields in the definition of P .

In particular P is C∞ hypoelliptic at the origin. This means that there exists an open

neighborhood of the origin, Ω, such that for every open set V b Ω, 0 ∈ V , we have,

Pu ∈ C∞(V )⇒ u ∈ C∞(V ),

for every distribution u ∈ D ′(Ω).
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The characteristic manifold of P is the real analytic manifold

(2) Char(P ) =
{

(x, ξ) ∈ T ∗R4 \ {0} | ξ1 = ξ2 = 0, x1 = x2 = 0, ξ23 + ξ24 > 0
}
.

According to Treves conjecture one has to look at the strata associated with P .

The stratification associated with P is made up of a symplectic single stratum

Σ1 =
{

(0, 0, x3, x4; 0, 0, ξ3, ξ4) |ξ23 + ξ24 > 0
}

= Char(P ).

According to the conjecture we would expect local real analyticity near the origin for

the distribution solutions, u, of P1u = f , with a real analytic right hand side.

We are ready to state the theorem that is proved in the next section.

Theorem 2.1. P is not analytic hypoelliptic near the origin.

As a consequence of Theorem 2.1 we have

Corollary 2.1. The sufficient part of Treves conjecture does not hold.

We note however that for a single symplectic stratum of codimension 2 the conjecture

is true (see [12]).

3. Proof of Theorem 2.1

In this section we construct a solution to the equation Pu = 0 which is not Gevrey s

for any s < s0 = 4
3

and is defined in a neighborhood of the origin. This proves Theorem

2.1.

In fact we look for a function u(x, y, t) defined on Rx ×Ry × (R+
t ∪ {0}) and such that

P (x,D)A(u) = 0,

where

(1) A(u)(x) =

∫ +∞

Mu

e−iρx4+x3z(ρ)ρ
θ−ρθu(ρ

1
2x1, ρ

µx2, ρ)dρ,

with

θ =
3

4
,
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µ > 0, z(ρ) and Mu > 0 are to be determined. Here we assume that x ∈ U , a suitable

neighborhood of the origin whose size will ultimately depend on the upper estimate for

z(ρ).

We have

P (x,D)A(u)(x)

=

∫ +∞

Mu

e−iρx4+x3z(ρ)ρ
θ−ρθ

[
− ρ∂2x1u− x

2
1(z(ρ))2ρ

3
2u

+ x21ρ
2u− ρ2µ∂2x2u− x

2
2(z(ρ))2ρ

3
2u+ x42ρ

2u
]
dρ.

Rewriting the r.h.s. of the above relation in terms of the variables y1 = ρ
1
2x1, y2 = ρµx2,

we obtain

P (x,D)A(u)(x) =

∫ +∞

Mu

e−iρx4+x3z(ρ)ρ
θ−ρθ

[
− ρ∂21u− y21(z(ρ))2ρ

1
2u

+ y21ρu− ρ2µ∂22u− y22(z(ρ))2ρ
3
2
−2µu+ y42ρ

2−4µu
]
y1=ρ1/2x1
y2=ρµx2

dρ.

Choose now µ = 1
3
. Then the above relation becomes

P1(x,D)A(u)(x) =

∫ +∞

Mu

e−iρx4+x3z(ρ)ρ
θ−ρθ

[
− ρ

(
∂21 − y21

(
1− (z(ρ))2ρ−

1
2

))
u

+ ρ
2
3

(
−∂22 − y22(z(ρ))2ρ

1
6 + y42

)
u
]
y1=ρ1/2x1

y2=ρ
1
3 x2

dρ.

We make the Ansatz that

(2) |z(ρ)| < M
1
4
u .

We shall see that condition (2) will be satisfied.

Set τ(ρ) =
(

1− (z(ρ))2ρ−
1
2

) 1
4
. We note that, due to condition (2), the quantity in

parentheses is positive. Choose

(3) u(y1, y2, ρ) = e−(τ(ρ)y1)
2/2u2(y2, ρ),

in such a way we have

(4)
(
−∂21 + y21τ(ρ)4

)
e−(τ(ρ)y1)

2/2 = τ(ρ)2e−(τ(ρ)y1)
2/2.
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We then obtain

P (x,D)A(u)(x)

=

∫ +∞

Mu

e−iρx4+x3z(ρ)ρ
θ−ρθu1(τ(ρ)ρ

1
2x1)

[{
ρ
(

1− (z(ρ))2ρ−
1
2

) 1
2

+ ρ
2
3

(
−∂22 − y22(z(ρ))2ρ

1
6 + y42

)}
u2(y2, ρ)

]
y2=ρ

1
3 x2

dρ.

Our next step is to find u2 as a solution of the differential equation

(5)
(

1− (z(ρ))2ρ−
1
2

) 1
2
λu+ ρ−

1
3

(
−∂22 − y22(z(ρ))2ρ

1
6 + y42

))
u = 0,

where we wrote u instead of u2 for the sake of simplicity. (5) becomes(
1− (z(ρ))2ρ−

1
2

) 1
2
λu+ ρ−

1
3

(
−∂22 + y42

)
u− (z(ρ))2ρ−

1
6y22u = 0,

We set

(6) t = ρ−
1
6 ,

so that the above equation becomes(
1− (z1(t))

2t3
) 1

2 λu+ t2
(
−∂22 + y42

)
u− (z1(t))

2ty22u = 0,

where z1(t) = z(ρ). The latter equation can be turned into a stationary semiclassical

Schrödinger equation if we perform the canonical dilation

y2 = yt−
1
2 :(

1− (z1(t))
2t3
) 1

2 u− t3∂2yu+ y4u− (z1(t))
2y2u = 0.

Set

(7) h = t
3
2 .

Note that t, h are small and positive for large ρ. Thus we may rewrite the above equation

as

(8)
[ (

1− (z2(h))2h2
) 1

2 − h2∂2y + y4 − (z2(h))2y2
]
u = 0,

where z2(h) = z1(t).
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We want to show that there are countably many choices for the function z2(h) in such

a way that equation (8) has a non zero solution in L2(R), which actually turns out to be

a smooth rapidly decreasing function.

Since the term (1− (z2(h))2h2)
1
2 is a scalar quantity commuting with the other terms,

we consider first the operator

−h2∂2y + y4 − (z2(h))2y2.

This is a Schrödinger operator with a symmetric double well potential. The latter is not

positive everywhere; in order to work with a positive double well potential we subtract

(and add) its minimum. This is

−1

4
z42 .

Equation (8) becomes

(9)
[ (

1− (z2(h))2h2
) 1

2 − 1

4
z2(h)4 − h2∂2y + y4 − (z2(h))2y2 +

1

4
z2(h)4

]
u = 0,

Let us make the Ansatz that z2 is a positive valued function. We make the canonical

dilation

y = xz2.

Then (9) becomes

(10)
[ (

1− (z2(h))2h2
) 1

2 − 1

4
z2(h)4 − h2z2(h)−2∂2x

+ z2(h)4x4 − (z2(h))4x2 +
1

4
z2(h)4

]
u = 0,

whence

(11)
[ (

1− (z2(h))2h2
) 1

2 z2(h)−4 − 1

4
− h2z2(h)−6∂2x + x4 − x2 +

1

4

]
u = 0,

Let us consider the one dimensional Schrödinger operator

(12) −
(
hz2(h)−3

)2
∂2x +

(
x2 − 1

2

)2

.

This kind of anharmonic oscillators play a deep role in the study of hypoelliptic problems

(see, for instance, [24],[29], [30], [32]).

By [5] (Chapter 2, Theorem 3.1) the above Schrödinger operator has a discrete simple
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spectrum depending in a real analytic way on the parameter hz2(h)−3, for h > 0. Let us

denote by

E

(
h

z2(h)3

)
an eigenvalue. Let u = u(x, h) be the corresponding eigenfunction. Then (11) becomes

(13)
(
1− (z2(h))2h2

) 1
2 z2(h)−4 − 1

4
+ E

(
h

z2(h)3

)
= 0.

Next we are going to solve the above equation w.r.t. z2 as a function of h, for small

positive values of h.

Proposition 3.1. There is h0 > 0 such that equation (13) implicitly defines a function

z2 ∈ C([0, h0[) ∩ Cω(]0, h0[). In particular

z2(h)→ z̃ =
√

2 > 0

when h→ 0+. Therefore we may always assume that

(14) z2(h) ∈
[

1

2
z̃,

3

2
z̃

]
,

for h ∈ [0, h0[.

Proof. The operator in (12) has a symmetric non negative double well potential with two

non degenerate minima and unbounded at infinity. From Theorem 1.1 in [34] we deduce

that

(15) lim
µ→0+

E(µ)

µ
= e∗ > 0.

We may then continue the function E, by setting E(0) = 0, as a function in C([0,+∞[)∩

Cω(]0,+∞[).

Set

(16) f(h, z) =
(
1− z2h2

) 1
2 z−4 − 1

4
+ E

(
h

z3

)
.

Note that f(0, z̃) = 0. We want to show that the equation f(h, z) = 0 can be uniquely

solved w.r.t. z for h ∈ [0, h0], for a suitable h0.

We need the
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Lemma 3.1. [Feynmann-Hellman Formula] For every µ0 > 0 we have that ∂µE(µ) exists

and is bounded for 0 ≤ µ ≤ µ0.

Proof of Lemma 3.1. Let

(17) Qµ(x, ∂x) = −µ2∂2x + x4 − x2 +
1

4
.

From Qµv = E(µ)v we get

〈Qµ∂µv, v〉+ 2µ‖∂xv‖2 = E(µ)〈∂µv, v〉+ (∂µE(µ))‖v‖2.

Due to the self adjointness of Qµ the first terms on both sides of the above identity are

equal, so that

∂µE(µ) = 2µ‖∂xv‖2 ≥ 0,

for every µ > 0, provided v is normalized. Again from Qµv = E(µ)v we deduce that

(18) µ2‖∂xv‖2 ≤ 〈Qµv, v〉 = E(µ).

Hence

0 ≤ ∂µE(µ) ≤ 2
E(µ)

µ
→ 2e∗

for µ→ 0+. The existence of the right derivative in µ = 0 is a consequence of (15). �

Now

∂f

∂z
(h, z) = −

(
1− z2h2

)− 1
2 z−3h2 − 4

(
1− z2h2

) 1
2 z−3 − 3E ′

(
h

z3

)
h

z3
z−1.

The above quantity is strictly negative if (h, z) ∈ [0, h0[×[z̃−δ, z̃+δ], for a suitable choice

of small h0, δ.

Because of the definition of z̃ and (16), f(h, z̃ − δ) > 0, f(h, z̃ + δ) < 0 possibly taking

a smaller h0, δ, for 0 ≤ h ≤ h0. Since f is continuous and strictly decreasing on the

h-lines there is a unique zero of the equation f(h, z(h)) = 0 with z(h) ∈ [z̃ − δ, z̃ + δ] for

0 ≤ h ≤ h0.

For positive h trivially z(h) is real analytic. Let us show that z(h) ∈ C([0, h0[). Arguing

by contradiction assume that z(h) 6→ z̃ for h → 0+. Then there is a sequence hk → 0+

such that z(hk) → ẑ 6= z̃. Then 0 = f(hk, z(hk)) → f(0, ẑ) which is false since z̃ is the

only zero of f(0, z) = 0. �
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Remark 3.1. Let h0 be the quantity define in Proposition 3.1. Set h0 = ρ
− 1

4
0 . Choosing

Mu ≥ max{ρ0, (32 z̃)4} we have that the function z2 is defined for ρ ≥ Mu and that (2) is

satisfied, so that 1− z(ρ)2ρ−
1
2 > 0.

We recall here the following result concerning the boundedness of the eigenfuntions of

(17), which is a direct consequence of the Agmon estimates (see [19] or the book [18]).

Lemma 3.2. Let v(x, µ) denote the L2(R) normalized eigenfunction corresponding to

E(µ). v is rapidly decreasing w.r.t. x and satisfies the estimates

(19) |v(j)(x, µ)| ≤ Cjµ
−(j+1)/2,

for x ∈ R, Cj > 0 independent of 0 < µ < µ0, j = 0, 1, 2, µ0 suitably small.

Remark 3.2. Note that because of Lemma 3.2 the formal method of sliding the differential

operator P under the integration sign becomes legitimate, since a power singularity does

no harm to the convergence of the integral in ρ.

The integral A(u) in (1) is a convergent integral since u = e−(τ(ρ)y1)
2/2u2, u2 is a real

analytic function of x2, e
−(τ(ρ)y1)2/2 is rapidly decreasing, while u2 is rapidly decreasing

w.r.t. x2 and satisfies (19) with µ = O
(
ρ(− 1

4)
)

.

Then (11) holds for 0 ≤ h ≤ h0 and hence for ρ ≥ ρ0.

Going back to (1) we see that

P (x,D)A(u) = 0.

Before concluding the proof of the sharpness of the Gevrey s0 = 4/3 regularity for A(u),

we need to make sure that the function u = e−(τ(ρ)y1)
2/2u2 does not have any effect on the

convergence of the integral at infinity as well as on the Gevrey behavior of A(u). As far as

u1 = e−(τ(ρ)y1)
2/2 is concerned, this is obvious, since u1 is a rapidly decreasing function of

τ(ρ)ρ
1
2x1, where τ(ρ) is defined before equation (3), and, computing this function at the

origin—as we need to do—will not affect the exponential in A(u). We are thus left with

u2 = u2(ρ
1
3x2, ρ). Note that u2 is rapidly decreasing w.r.t. ρ

1
3x2, and, due to Lemma 3.2,

that u2 is polynomially bounded in ρ, uniformly for x2 in a neighborhood of the origin.
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We have now to show that u2(0, ρ) can be bounded from below in order to be sure that

u2(0, ρ) does not vanish with so high a speed to compromise the Gevrey 4/3 regularity.

Let us then choose u2 = u2(x, }). It is the ground state of the operator

(20) Q}(x, ∂x) = −}2∂2x + x4 − x2 +
1

4
,

where, by (11),

(21) } =
h

z2(h)3
.

Note that } tends to zero if and only if h tends to zero. u2 is an eigenfunction of (20)

corresponding to the lowest eigenvalue E(})

(22) Q}(x, ∂x)u2 = E(})u2.

It is wellknown that E(}) is a simple eigenvalue and u can be chosen strictly positive.

Since the Schrödinger operator Q} has a symmetric potential, so that its eigenfunctions

are either even or odd functions w.r.t. the variable x2. Therefore, u is an even function.

Furthermore u2 satisfies the following bound from below:

u2(0, }) ≥ ce−
C1
} ,

where c, C1 are positive constant independent of }. This type of tunneling estimate could

be deduced from the results of Helffer and Sjöstrand, [19] (see also the book [18], section

4.5). Another way of deriving such an estimate as a consequence of [19] is using the paper

[25] by Martinez (see also [3], section 3).

We are now in a position to conclude the proof of Theorem 2.1. We recall that

} = O
(
ρ−

1
4

)
and θ =

3

4
.

We compute

(−Dx4)
kA(u)(0) =

∫ +∞

Mu

e−ρ
3
4 ρku1(0)u2(0, ρ)dρ

≥ u1(0)C

∫ +∞

Mu

e−ρ
3
4−C1ρ

1
4 ρkdρ ≥ Ck+1

2 k!
4
3 .
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The last inequality above holds since

∫ +∞

Mu

e−ρ
3
4−C1ρ

1
4 ρkdρ ≥ Cτ

∫ +∞

Mu

e−cρ
3
4 ρkdρ

= −Cτ
∫ Mu

0

e−cρ
3
4 ρkdρ+ Ck+1

2 k!
4
3

≥ Ck+1
2 k!

4
3

(
1− CτC−(k+1)

2 Mue
−cM

3
4
u
Mk

u

k!
4
3

)
≥ Ck+1

3 k!
4
3 ,

if k is suitably large and C3 is suitable.

In particular, this shows that A(u) is not an analytic function.
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[16] V. V. Grušin, On a class of elliptic pseudodifferential operators degenerating at a submanifold , Mat.

Sbornik 84 (2) (1971), 163–195.

[17] N. Hanges and A. A. Himonas, Singular solutions for sums of squares of vector fields, Comm. in

Partial Differential Equations 16 (1991), 1503–1511.

[18] B. Helffer, Semi-Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes

in Mathematics, no. 1336, 1988, Springer Verlag.
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[20] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171.
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[22] L. Hörmander, The Analysis of Partial Differential Operators, I, Springer Verlag, 1985.
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