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Abstract. This is a joint work with E. Hernández, J. Parcet and V. Paternostro.

We will discuss the structure of bases and frames of unitary orbits of discrete groups in

invariant subspaces of separable Hilbert spaces. These invariant spaces can be character-

ized, by means of Fourier intertwining operators, as modules whose rings of coefficients

are given by the group von Neumann algebra, endowed with an unbounded operator

valued pairing which defines a noncommutative Hilbert structure. Frames and bases

obtained by countable families of orbits have noncommutative counterparts in these

Hilbert modules, given by countable families of operators satisfying generalized repro-

ducing conditions. These results extend key notions of Fourier and wavelet analysis to

general unitary actions of discrete groups, such as crystallographic transformations on

the Euclidean plane or discrete Heisenberg groups.

Sunto. Lavoro in collaborazione con E. Hernández, J. Parcet e V. Paternostro.

Discuteremo la struttura di basi e frames ottenute da orbite di rappresentazioni unitarie

di gruppi discreti in sottospazi invarianti di spazi di Hilbert separabili. Tali spazi invari-

anti possono essere caratterizzati, attraverso intrallacciamenti, come moduli il cui anello

dei coefficienti é dato dall’algebra di von Neumann del gruppo, e sono dotati inoltre di

una mappa sesquilineare a valori in spazi di operatori di convoluzione densamente definiti,

che definiscono una struttura di Hilbert. Si puó mostrare che i frames e le basi associate

a famiglie numerabili di orbite hanno una controparte in queste strutture di Hilbert, che

ammettono sistemi riproducenti. Questi risultati estendono nozioni chiave di analisi di

Fourier e wavelets a sistemi pi generali che possono includere trasformazioni geometriche

per gruppi cristallografici o rappresentazioni di gruppi di Heisenberg discreti.
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ISSN 2240-2829.

36



FRAMES OF UNITARY ORBITS AND HILBERT MODULES 37

1. Introduction

1.1. Background and motivation. One of the basic results of Fourier analysis is Shan-

non sampling theorem: any function in the Paley-Wiener space

PW =

{
f ∈ L2(R) | supp(f̂) ⊂

[
− 1

2
,
1

2

]}
,

where f̂(ξ) =

∫
R
e−2πiξxf(x)dx is the Fourier transform of f , can be perfectly recovered

from a collection of integer samples {f(k)}k∈Z as

(1) f(x) =
∑
k∈Z

f(k)
sin(π(x− k))

π(x− k)

where convergence is in Lp(R) for all p ≥ 2. This result lies at the roots of the problem of

sampling in Hilbert spaces of entire functions, and the Paley-Wiener space is the prototype

of a shift-invariant space, being it invariant under integer translations:

f ∈ PW ⇒ tkf ∈ PW ∀ k ∈ Z

where tkf(x) = f(x − k). This comes as a consequence of the Fourier intertwining of

translations with modulations

t̂kf(ξ) = e−2iπξkf̂

since a phase multiplication does not change the support of f̂ .

A simple proof of the Shannon sampling theorem in L2 can then be obtained as follows.

Denote with S(x) =
sin πx

πx
, and observe that Ŝ = 1[− 1

2
, 1
2

]. Since PW functions are

analytic, thus continuous, then

〈f, tkS〉L2(R) = 〈f̂ , t̂kS〉L2(R) = 〈f̂ , e−2iπk·〉L2([− 1
2
, 1
2

]) = f(k).

The conclusion follows because, by classic Fourier analysis,

L2
([
− 1

2
,
1

2

])
= span{e−2iπk·}k∈Z

and complex exponentials form an orthonormal basis. Thus {tkS}k∈Z is an orthonormal

basis of PW , and the sampling formula (1) reads

f =
∑
k∈Z

〈f, tkS〉L2(R)tkS.
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Orthonormal bases of translates are also crucial for multiresolution analysis [22, 17].

This is defined by means of (dyadic) dilations δ2f(x) = 2
1
2f(2x) in terms of a sequence of

nested closed subspaces . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . of L2(R), and of a ϕ ∈ V0, satisfying

1. f ∈ Vj ⇐⇒ δ2f ∈ Vj+1 for all j ∈ Z

2. ∪j∈ZVj = L2(R)

3. {tkϕ}k∈Z is an orthonormal basis of V0 .

Multiresolution analysis is a standard construction for obtaining orthonormal wavelets.

They are defined as systems of dilations and translations {ψj,k = δj2tkψ}j,k∈Z of a template

ψ ∈ L2(R) : ψ̂(2ξ) = e2πiξm0(ξ +
1

2
) ϕ̂(ξ)

where m0 is the low pass filter associated to ϕ (1-periodic such that ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ)).

The translates of ψ form an orthonormal basis of V ⊥0 ∩ V1, so that its wavelets system

provides an orthonormal basis of L2(R). Such classical wavelets has been used for sev-

eral purposes of pure and applied nature. For example, they allow to obtain an elegant

proof of the so-called T (1) theorem, by showing that the wavelet matrix representation

〈ψj,k, Tψj′,k′〉 of a singular integral operator T is almost diagonal [23]. They also provide

characterizations of several function spaces: for example, f ∈ L2(R) belongs to the Sobolev

space W s,2(R) if and only if (see e.g. [17, Th. 6.18]) the weighted wavelet coefficients{
2js〈f, ψj,k〉L2(R)

}
j,k∈Z

belong to `2(Z2) for a smooth bandlimited mother wavelet ψ, and similar characterizations

are available for Besov or Hardy spaces. But wavelets are widely used also for applications,

especially in signal and image processing, data compression and inverse problems.

In many situations, it has turned out to be useful to weaken the condition of having

orthonormal bases. In particular, one may have to deal with, or to look for, dictionaries

which contain redundancies, in the sense that their elements are not necessarily linearly

independent. This has led to the notion of frames [9]. Given a separable Hilbert space H,

a countable set Ψ = {ψj}j∈I ⊂ H is a frame if there exist two constants 0 < A ≤ B <∞

such that

(2) A‖f‖2
H ≤

∑
j∈I

|〈f, ψj〉H|2 ≤ B‖f‖2
H ∀ f ∈ spanΨ.
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A frame defines thus a quasi-isometry between the Hilbert space it generates and the

`2 space of its indices (parameters), by means of the analysis operator

T∗Ψf = {〈f, ψj〉H}j∈I .

Its adjoint operator, called synthesis operator, can be defined on the dense space of finite

sequences c = {cj}j∈I ∈ `0(I) as

TΨc =
∑
j∈I

cjψj

and whenever Ψ is a frame one can define a frame operator as

FΨf = TΨT∗Ψ =
∑
j∈I

〈f, ψj〉Hψj.

Of course orthonormal systems are frames, and in that case the frame operator is simply

the identity. In general, one has that the frame condition (2) is equivalent to

AI ≤ FΨ ≤ BI ,

which implies in particular that the frame operator is invertible with a bounded inverse.

This provides a canonical way to reconstruct an element f ∈ spanΨ starting from the

“generalized samples” provided by the analysis operator, as

f =
∑
j∈I

〈f, ψj〉HF−1
Ψ ψj =

∑
j∈I

T∗Ψf(j) ψ̊j.

For this reason, given a frame Ψ = {ψj}j∈I , the frame Ψ̊ = {ψ̊j = F−1
Ψ ψj} is called

the canonical dual frame. Observe, however, that the coefficients of these reconstruction

formulas are not unique, because frames are not bases1. Moreover, the inversion of the

frame operator may be a too expensive task: in these cases it may be convenient to work

with a tight frame, i.e. if A = B, since the associated frame operator is a multiple of the

identity.

Finally, it is worth mentioning that multiresolution analysis, as well as many tools of

standard linear decompositions, have been extended to frames, but frame theory has also

several connections with other branches of mathematics [10, 21].

1A frame {ψj}j∈I is an orthonormal basis if and only if A = B = 1 and ‖ψj‖ = 1 for all j ∈ I.



40 DAVIDE BARBIERI

These arguments have motivated a considerable amount of results aimed to settle a

general structure theory for frames and bases in shift-invariant spaces [24, 6]. A key tool

in the development of this program is a linear isometric isomorphism, called fiberization

mapping :

(3)
T : L2(R) → L2([0, 1], `2(Z))

f 7→
{
f̂(·+ k)

}
k∈Z

.

One of the fundamental results of this approach is the following. (Cf. [6]).

Theorem 1. Let {φj}j∈I be a countable family in L2(R). Then the system of translates

Eφ = {tkφj} k∈Z
j∈I

is a frame with bounds 0 < A ≤ B < ∞ if and only if the system

Φ(ξ) = {T φj(ξ)}j∈I ⊂ `2(Z) is a frame with bounds 0 < A ≤ B <∞ for a.e. ξ ∈ [0, 1].

This result allows to get rid of translations and reduce to families on `2(Z) with the same

cardinality as {φj}j∈I , parametrized by the compact space [0, 1]. Its proof relies basically

on the Fourier analysis implemented by the isometry T , which satisfies the intertwining

property

(4) T tkf(ξ) = e−2πikξT f(ξ).

When only one generator is considered, as in the case of the Paley-Wiener space, frames

of translates can be characterized (cf. [5]) in terms of the bracket map

(5)
[·, ·] : L2(R)× L2(R) → L1([0, 1])

(ϕ, ψ) 7→ [ϕ, ψ](ξ) =
∑

k∈Z ϕ̂(ξ + k)ψ̂(ξ + k),

a sesquilinear map whose Fourier coefficients are the matrix elements of the translation

operator

(6)

∫ 1

0

[ϕ, ψ](ξ)e2πikξdξ = 〈ϕ, tkψ〉L2(R).

Theorem 2. Given φ ∈ L2(R), the system of translates {tkφ}k∈Z is a frame with bounds

0 < A ≤ B <∞ if and only if

A1Ωφ ≤ [φ, φ] ≤ B1Ωφ for a.e. ξ ∈ [0, 1]

where Ωφ = {ξ ∈ [0, 1] : [φ, φ](ξ) 6= 0}.
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While there are direct proofs of this result, it actually can also be deduced from the

previous theorem by observing that

[ϕ, ψ](ξ) = 〈T ϕ(ξ), T ψ(ξ)〉`2(Z).

1.2. Abstract setting and examples. Shift invariant spaces and systems of translates

can be considered as special cases of the following setting.

Let Γ be a discrete group, H a separable Hilbert space, and Π : Γ→ U(H)

a unitary representation. A closed subspace V ⊂ H is (Γ,Π)-invariant if

f ∈ V ⇒ Π(γ)f ∈ V ∀ γ ∈ Γ.

Given a countable set {φj}j∈I ⊂ H, denote its family of orbits by

EΓ
φ = {Π(γ)φj} γ∈Γ

j∈I

and denote by SΓ
φ = spanEΓ

φ

H
the (Γ,Π)-invariant they generate.

Motivated by the previous discussion we seek to characterize such invariant spaces in

terms of some multiplier property, and to characterize the families EΓ
φ which give rise to

frames.

In order to exploit the invariance with respect to the group action, an effective Fourier

analysis is needed2. When Γ is Abelian, this is provided by Pontryagin duality and the

group of characters. For non-Abelian groups, a different notion of duality is needed.

The one based on the group von Neumann algebra is adequate to deal with all discrete

groups and, with minor changes, it can be extended to unimodular groups [20]. This

duality consists of, roughly speaking, associating to a function on the group the (spectrum

of the) group convolution operator by that function. When the group is Abelian, its

group von Neumann algebra is isomorphic (via Pontryagin duality) to the algebra of

essentially bounded functions on its dual group, and the spectrum of the convolution

2The Fourier transform is a fundamental tool to exploit group symmetries. In the typical Abelian

setting, an operator that is invariant under translations, and thus can be realized as a convolution with

a – possibly singular – integral kernel (see e.g. a sharp statement in [25, Th. 3.16]), can be studied as a

multiplier by the Fourier transform of the kernel. However, when the symmetry is related to a non-Abelian

group, Fourier duality produces noncommutative objects, so multipliers themselves are operator-valued.
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operator coincides with the ordinary Fourier transform. A sketch of this construction will

be given in §2, together with some facts about noncommutative Lp spaces, the analogues

of Plancherel theorem and the L1-uniqueness of Fourier coefficients.

Some examples of relevant unitary representations of non-Abelian discrete groups can

be useful to get an idea of possibly related problems.

The discrete Heisenberg group

The discrete Heisenberg group Hn
d is the subgroup of Hn with underlying set Zn×Zn×Z

and composition law

(j, k, l) · (j′, k′, l′) = (j + j′, k + k′, l + l′ + k.j′).

It can be considered with respect to the representation given by left discrete transla-

tions on L2(Hn), which was studied in [1], for example with the purpose of combining it

with homogeneous dilations. Another typical unitary representation is the Schrödinger

representation on L2(Rn)

πa,b(j, k, l)f(x) = e−2πiable2πiaj.xf(x− bk)

which lies at the heart of Gabor systems. When f ∈ L2(Rn) is a localized function, such as

a Gaussian, a linear decomposition along its πa,b orbit defines (up to the central variable)

a localized Fourier transform.

Crystallographic groups

For x ∈ Rn and r ∈ O(n) we can define a composition law on G = Rn ×O(n) as

(x, r) · (x′, r′) = (x+ rx′, rr′).

Let B be a full rank lattice of Rn and let R be a finite subgroup of O(n) such that rB = B

for all r ∈ R. Then Γ = BoR is a discrete subgroup of G that is called a crystallographic

group. These are transformation groups that can be studied in terms of the so-called

quasiregular representation on L2(Rn) given by

π(b, r)ψ(x) = ψ(r−1(x− b)),

and linear decompositions along their orbits can be used to extract information contained

in anisotropic data such as images.
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2. Fourier analysis in terms of the group von Neumann algebra

If G is a locally compact Abelian (LCA) group and f ∈ L1(G) ∩ L∞(G), the Fourier-

Pontryagin transform is defined via the characters Ĝ = {α : G homo→ C, |α| = 1} by

Ff(α) :=

∫
G

f(g)α(g)dg

where dg is the Haar measure of G. If we denote by Lf convolution with f in L2(G)

and by MFf multiplication by Ff in L2(Ĝ), then Lf and Mf are bounded on L2(G) and

L2(Ĝ), respectively, and

MFf = FLfF−1.

Analogously, one can define the Fourier transform of any measurable f for which Lf is a

closed densely defined operator on L2(G). Then Pontryagin theory allows one to prove

many classical results of Fourier analysis such as Plancherel theorem or L1 uniqueness in

terms of this abstract correspondence.

On general locally compact groups Pontryagin duality is not available. Instead one can

consider the convolution operator Lf as a Fourier transform of f , paying attention to the

fact that for non-Abelian groups convolution is not commutative. Given a discrete group

Γ, the space of bounded left convolution operators on `2(Γ) forms a C∗-algebra that is

called the left von Neumann algebra of Γ, denoted by L (Γ). The notion of Fourier duality

for discrete (and more general locally compact) groups in terms of their von Neumann

algebra was introduced in several contexts [20, 14, 13, 11].

Recall that, in general, a von Neumann algebra M (see e.g. [19, Vol.1, Chapt. 5]) is

a unital weak-operator closed C∗-algebra3. A von Neumann algebra M is equivalently

characterized as a subalgebra of the algebra of bounded operators over a Hilbert space

B(H) satisfying M′′ = M, where M′ = {a ∈ B(H) | ax = xa ∀x ∈ M} denotes the

commutant (see e.g. [12, Th. 6.4, Def. 7.1]).

3A C∗-algebra M is a Banach algebra, i.e. an associative algebra endowed with a norm with respect

to which it is a Banach space and that satisfies ‖xy‖ ≤ ‖x‖ ‖y‖ ∀ x, y ∈ M, that has an involution

∗ : M → M such that ‖x∗x‖ = ‖x‖2 ∀ x ∈ M. Given a Hilbert space H, the space of its bounded

operators B(H) is a C∗-algebra where an involution is given by the operation of taking the adjoint.

Actually every C∗-algebra can be realized as a subalgebra of B(H) for some H (see e.g. [12, Th. 5.17]).
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In order to construct the left von Neumann algebra L (Γ) of a discrete group Γ as

a subalgebra of B(`2(Γ)), observe that given f ∈ `0(Γ), i.e. with finite support, left

convolution with f defines a bounded operator on `2(Γ) satisfying

Lfv(γ0) = f ∗ v(γ0) =
∑
γ∈Γ

f(γ)v(γ−1γ0) =
∑
γ∈Γ

f(γ)λ(γ)v(γ0)

where λ : Γ→ U(`2(Γ)) is the left regular representation. Thus we can write

Lf =
∑
γ∈Γ

f(γ)λ(γ) ∈ span{λ(γ)}γ∈Γ ⊂ B(`2(Γ)).

In analogy to classical Fourier analysis on Z, we will call trigonometric polynomials the

operators obtained by finite linear combinations of the left regular representation. The

left von Neumann Algebra of Γ is then defined to be the closure of the trigonometric

polynomials in the weak operator topology of `2(Γ), i.e. by

L (Γ) := span{λ(γ)}γ∈Γ

WOT
.

We will denote by τ : L (Γ)→ C the Haar trace, given by

τ(F ) = 〈Fδe, δe〉`2(Γ)

where e denotes the identity element of Γ and {δγ}γ∈Γ is the canonical basis of `2(Γ).

Note that the functional τ : L (Γ)→ C is

i. tracial, i.e. τ(F1F2) = τ(F2F1) for all F1, F2 ∈ L (Γ)

ii. normal, i.e. for all {Fn}n∈N ⊂ L (Γ) that converges to F ∈ L (Γ), then τ(Fn)→ τ(F )

iii. finite, i.e. τ(F ∗F ) <∞ for all F ∈ L (Γ)

iv. faithful, i.e. τ(F ∗F ) = 0 ⇒ F = 0 for all F ∈ L (Γ) .

These properties are easily checked for trigonometric polynomials, and thus extend by

density. To see traciality, it suffices to observe that

(7) τ(λ(γ1)λ(γ2)) = δγ1,γ2 ,

which implies that τ(F1F2) =
∑
γ∈Γ

f1(γ)f2(γ) = τ(F2F1), for Fi =
∑
γ∈Γ

fi(γ)λ(γ), i = 1, 2.

Normality is a direct consequence of the WOT closure of L (Γ), while finiteness and

faithfulness are direct consequences of τ(F ∗F ) = ‖Fδe‖2
`2(Γ), by definition of τ .
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A normal, (semi)finite, faithful trace endows a von Neumann algebra with the structure

of a noncommutative measure space. This statement can be intuitively understood as a

consequence of the following definition. In analogy to classical Fourier analysis, we define

the Fourier coefficients a given F ∈ L (Γ) by

(8) F̂ (γ) = τ(λ(γ)∗F )

so that F has a Fourier series F =
∑

γ∈Γ F̂ (γ)λ(γ). The trace of F is thus

τ(F ) = F̂ (e),

which in the Abelian setting coincides with the definition of integral4.

Moreover, for 1 ≤ p <∞ we can define the norms

‖F‖p = τ(|F |p)

for trigonometric polynomials F , where the modulus is defined as the selfadjoint operator

|F | =
√
F ∗F . This provides a notion of noncommutative Lp spaces on L (Γ), as

Lp(L (Γ)) = span{λ(γ)}γ∈Γ

‖·‖p
1 ≤ p <∞,

while for p = ∞ we can set L∞(L (Γ)) = L (Γ). For p < ∞ the elements of Lp(L (Γ))

are closed and densely defined (possibly unbounded) operators on `2(Γ). Moreover, by

Hölder inequality (which still holds for these norms) and the finiteness of τ we have that

Lq(L (Γ)) ⊂ Lp(L (Γ)) for all 1 ≤ q < p ≤ ∞, and the Fourier coefficients (8) are

well defined for any F ∈ Lp(L (Γ)). The following theorem summarizes fundamental

consequences of this noncommutative Fourier duality (see e.g. [2, Lem 2.1, 2.2]).

Theorem 3.

Uniqueness: Let F ∈ L1(L (Γ)). If F̂ (γ) = 0 for all γ ∈ Γ, then F = 0.

Plancherel: Let F ∈ L2(L (Γ)). Then F̂ ∈ `2(Γ) and ‖F‖2 = ‖F̂‖`2(Γ). Moreover,

if f ∈ `2(Γ) then
∑

γ∈Γ f(γ)λ(γ) converges in L2(L (Γ)) to an operator F such

that F̂ (γ) = f(γ) for all γ ∈ Γ.

4Think of it in Z: by definition f̂(k) =

∫ 1

0

f(ξ)e2πikξdξ, so f̂(0) is the integral of f .
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While the Plancherel-type result is a simple consequence of {λ(γ)}γ∈Γ being an or-

thonormal basis of L2(L (Γ)) by (7), the uniqueness result is somewhat deeper and based

on the fact that L (Γ) is the Banach dual of L1(L (Γ)). The predual of L (Γ) was intro-

duced in [14] as a function space, called the Fourier algebra defined by

A(Γ) = {f : Γ→ C : ∃ψ1, ψ2 ∈ `2(Γ) such that f(γ) = 〈ψ1, λ(γ)ψ2〉`2(Γ)}

which is isomorphic to L1(L (Γ)) because of a von Neumann algebra has a unique predual.

3. The bracket and the Helson maps

The bracket map (5) is a central tool for the study of shift-invariant spaces. By the

L1(T) uniqueness of Fourier coefficients, it can be characterized in terms of condition (6).

This approach was adopted in [16], where a generalized bracket map was defined in terms

of the Fourier coefficients of a unitary representation of an Abelian group. When the

group is not necessarily Abelian, an effective notion is the following [2].

Definition 4. Let Π be a unitary representation of a discrete group Γ on a separable

Hilbert space H. We say that Π is dual integrable if there exists a sesquilinear map

[·, ·] : H×H → L1(L (Γ)), called bracket map, satisfying

〈ϕ,Π(γ)ψ〉H = τ([ϕ, ψ]λ(γ)∗) ∀ϕ, ψ ∈ H , ∀ γ ∈ Γ.

In such a case we will call (Γ,Π,H) a dual integrable triple.

By [2, Prop. 3.2] and [4, Prop. 21] the bracket map satisfies the properties.

Proposition 5. Let (Γ,Π,H) be a dual integrable triple. Then

i. [ψ, ψ] ≥ 0, and ‖[ψ, ψ]‖1 = ‖ψ‖2
H .

ii. [ψ1, ψ2]∗ = [ψ2, ψ1] .

iii. Given F ∈ L (Γ), denote by PF the bounded operator on H given by

PF =
∑
γ∈Γ

F̂ (γ)Π(γ) .

Then

[PFψ1, ψ2] = F [ψ1, ψ2] , [ψ1,PFψ2] = [ψ1, ψ2]F ∗

for all ψ, ψ1, ψ2 ∈ H.
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Sketch of the proof. To see iii. consider the special case of F having only one nonzero

Fourier coefficient F̂ (γ0) = 1. In this case PF = Π(γ0), and by traciality of τ we get

τ([ψ1,Π(γ0)ψ2]λ(γ)∗) = 〈ψ1,Π(γ)Π(γ0)ψ2〉H = 〈ψ1,Π(γγ0)ψ2〉H

= τ([ψ1, ψ2]λ(γγ0)∗) = τ([ψ1, ψ2]λ(γ0)∗λ(γ)∗) , ∀ γ ∈ Γ.

By the L1(L (Γ))-uniqueness theorem, this implies [ψ1,Π(γ0)ψ2] = [ψ1, ψ2]λ(γ0)∗. �

Dual integrability is equivalent to square integrability, which is a minimal request for

having a reproducing system. Moreover, the existence of an L1 bracket map is equivalent

to the existence of a map that generalizes the fiberization mapping (3), intertwining the

representation π with the left regular representation, as in (4). The following result is

contained in [2, Th. 4.1], [4, Th. 4] and [4, Prop. 21].

Theorem 6. Let Π be a unitary representation of the discrete group Γ on the Hilbert

space H. The following are equivalent:

i. (Γ,Π,H) is a dual integrable triple.

ii. Π is square integrable, i.e. there exists a dense subspace D of H such that{
〈ϕ,Π(γ)ψ〉H

}
γ∈Γ
∈ `2(Γ) ∀ϕ ∈ H , ∀ψ ∈ D.

iii. There exist a σ-finite measure space (M, ν) and an isometry

T : H → L2((M, ν), L2(L (Γ))) ,

called Helson map, satisfying

(9) T [PFϕ] = FT [ϕ] ∀F ∈ L (Γ), ∀ϕ ∈ H.

A Helson map can actually be given via a concrete construction, which we sketch here.

For ψ ∈ H, let 〈ψ〉Γ = span{Π(γ)ψ}γ∈Γ be the space generated by its orbit. It is easy to

construct a countable family {ψj}j∈I such that H has the orthogonal decomposition

H =
⊕
j∈I

〈ψj〉Γ.

For each orbit, we define a map Sj :
∑

γ f(γ)Π(γ)ψj 7→
∑

γ f(γ)λ(γ) which provides an

isometric isomorphism of 〈ψj〉Γ onto the noncommutative weighted space

L2(L (Γ), [ψj, ψj]) = L (Γ)/{‖ · ‖2,[ψj ,ψj ] = 0}
‖·‖2,[ψj,ψj ]

, ‖F‖2,[ψj ,ψj ] = τ
(
|F |2[ψj, ψj]

) 1
2 .
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A realization of a Helson map (with M = I) can then be obtained as

(10)
T : H → `2(I, L2(L (Γ)))

ϕ 7→
{
Sj[P〈ψj〉Γϕ] [ψj, ψj]

1
2

}
j∈I

.

This satisfies, as a special case of (9), the Fourier intertwining relation

T [Π(γ)ϕ] =
{
Sj[P〈ψj〉ΓΠ(γ)ϕ] [ψj, ψj]

1
2

}
j∈I

=
{
Sj[Π(γ)P〈ψj〉Γϕ] [ψj, ψj]

1
2

}
j∈I

=
{
λ(γ)Sj[P〈ψj〉Γϕ] [ψj, ψj]

1
2

}
j∈I

= λ(γ)T [ϕ].

Moreover, a Helson map provides an expression for the bracket map via

(11) [ϕ, ψ] =

∫
M
T [ϕ]∗(x)T [ψ](x)dν(x).

The notion of Helson map is not unique for a given dual integrable representation, and

the map (10) is not the only possible realization. When the representation Π is given

by a measurable group action over a measure space, satisfying a tiling condition, another

realization can be obtained in terms of a generalized Zak transform [2, 3, 4]. However,

the bracket map is unique at the level of Fourier coefficients. The object defined by (10)

is thus independent of the choice of Helson map.

In the case of integer translations on L2(R), it is possible to obtain the map (3) via

Construction (10) by choosing a Shannon family {ψj}j∈Z defined by

ψ̂j = 1[j,j+1].

Then, the bracket map defined by (11) coincides (up to intertwining with the ordinary

Fourier transform) with the one in (5).

4. Invariant spaces and Hilbert modules

A Helson map endows a dual integrable triple with an isometry that maps H into a

fibered Hilbert space L2(M, ν)⊗L2(L (Γ)), where the image of each (Γ,Π)-invariant space

generated by an orbit is a closed subspace of L2(L (Γ)) (so it is isometrically isomorphic

to a closed subspace of `2(Γ) via the Plancherel theorem).

A remarkable consequence of Condition (9), expressed by the next theorem, is that any

(Γ,Π)-invariant subspace ofH can be characterized as a closed subspace of L2((M, ν), L2(L (Γ)))
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that is invariant under some noncommutative multiplier provided by the group von Neu-

mann algebra. This extends Abelian characterizations such as those in [7]. Thus, it is

equivalent to say that the latter space is a module whose algebra of coefficients is L (Γ).

Theorem 7. Let (Γ,Π,H) be a dual integrable triple, let V be a closed subspace of H,

and let M = T (V ). Then V is (Γ,Π)-invariant if and only if

FM ⊂ M ∀ F ∈ L (Γ).

Modules are linear structures that allow many of the constructions associated to vector

spaces by taking linear combinations with coefficients in associative algebras. In this

case, it is also possible to define, on any submodule M of T (H), an operator-valued inner

product that can be obtained from the bracket map via

{·, ·} = [·, ·] ◦ T −1 : M×M → L1(L (Γ))

(Φ, Ψ) 7→ {Φ, Ψ} = [T −1Φ, T −1Ψ ].

It is in fact a positive definite sesquilinear map satisfying

(12) {FΦ, Ψ} = F{Φ, Ψ} , {Φ, FΨ} = {Φ, Ψ}F ∗.

All L (Γ)-modules given as image under a Helson map of an invariant subspace are then

endowed with a so-called L2(L (Γ))-Hilbert module structure, in the sense of [18]. Such

Hilbert modules are also Hilbert spaces, with scalar product

(13) 〈Φ, Ψ〉 = τ({Φ, Ψ}).

Condition (12) ensures that the noncommutative inner product {·, ·} is compatible

with an algebra of coefficients that incorporates the group action, in the sense of the

intertwining (9) implemented by the Helson map. This is precisely the setting in which

to look for a result like Theorem 1. The significance of such a result would, however,

be highly dependent on the availability of a sufficiently rich notion of frames in this

noncommutative environment.

A notion of modular frames in general L2(L (Γ))-Hilbert modules is developed in [4],

and it can be summarized as follows.
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Theorem 8. Let M be an L2(L (Γ))-Hilbert module, let Φ = {Φj}j∈I ⊂ M be a countable

family and denote by

MΦ = spanL (Γ){Φj}

the closed submodule it generates, where the closure is taken with respect to the norm

induced by (13). Suppose Φ satisfies the condition

A{Ψ, Ψ} ≤
∑
j∈I

|{Φj, Ψ}|2 ≤ B{Ψ, Ψ} ∀ Ψ ∈ MΦ

for two constants 0 < A ≤ B <∞. Then the operator F̃Φ given by

(14) F̃ΦΨ =
∑
j∈I

{Ψ, Φj}Φj

is well-defined, bounded and invertible on MΦ, and there exists a countable family

Φ̊ = {Φ̊j = F̃−1
Φ Φj}j∈I

such that

Ψ =
∑
j∈I

Φj{Ψ, Φ̊j} =
∑
j∈I

Φ̊j{Ψ, Φj} ∀Ψ ∈ MΦ.

One of the main issues of dealing with such modular frames is that linear combinations

such as the ones defining the modular frame operator (14) need to incorporate coeffi-

cients arising from the inner product. A theory of frames in C∗-Hilbert modules, whose

inner product takes values in the algebra (and hence is bounded) was developed in [15].

However, in this case the inner product is L1(L (Γ))-valued, so linear combinations such

as in (14) are not standard modular combinations. These coefficients are not bounded

operators on `2(Γ), and do not constitute an algebra. A proper definition of such linear

combinations require a limiting process which heuristically corresponds to a topological

closure over a group orbit. Such a construction was developed in [4].

By the following theorem, proved in [4], we can see that this notion of noncommutative

frames is the correct one to treat unitary group actions. It describes the main structure of

reproducing systems in group-invariant Hilbert spaces and provides a full generalization

of the Euclidean results obtained in [6] and of their counterparts in LCA groups obtained

in [8].
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Theorem 9. Let (Γ,Π,H) be a dual integrable triple with Helson map T . For a countable

family {φj}j∈I ⊂ H, let EΓ
φ be the system of orbits

EΓ
φ = {Π(γ)φj : γ ∈ Γ, j ∈ I} ⊂ H

and let Φ be the modular system

Φ = {T [φj] : j ∈ I} ⊂ T (H).

Then the system EΓ
φ is a frame sequence if and only if Φ is a modular frame sequence with

the same frame bounds.
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