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AZIONI DI GRUPPO SULLA SFERA E RISULTATI DI
MOLTEPLICITÀ PER L’EQUAZIONE DI YAMABE CR

VITTORIO MARTINO

Abstract. We will show that the CR-Yamabe equation has several families of infinitely

many changing sign solutions, each of them having different symmetries. The problem

is variational but it is not Palais-Smale: using different complex group actions on the

sphere, we will find many closed subspaces on which we can apply the minmax argument.

Sunto. Proveremo che l’equazione di Yamabe CR ammette diverse famiglie di (infinite)

soluzioni a segno non costante, ognuna di esse con una distinta simmetria. Il problema è

variazionale, ma non Palais-Smale: usando distinte azioni di gruppo sulla sfera, troveremo

diversi sottospazi chiusi su cui poter applicare l’argomento di minmax.
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1. Introduction

The results in this note are obtained in collaboration with Ali Maalaoui and Giulio Tralli

(see [16], [21]).

We will show the existence of several families of infinitely many changing sign solutions

of the following sub-Riemannian Yamabe equation on the standard CR-sphere (S2n+1, θ)

(1) −∆θv + cnv = |v|
4

Q−2v, v ∈ S1(S2n+1),

where θ is the standard Liouville (contact) form, ∆θ denotes the related sub-Laplacian,

S1(S2n+1) is the Folland-Stein Sobolev type space on the sphere, Q = 2n+ 2 and cn is a
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suitable dimensional positive constant related to the (constant) Webster curvature of the

sphere (see [11] for a full detailed exposition).

The problem is variational but, as in the Riemannian case, the functional associated with

the equation (1) is not Palais-Smale.

For the classical Yamabe equation on Rn, after the classification of the positive solutions

(bubbles) in [4], the first result about changing sign solutions was proved by Ding in [8].

Following the analysis by Ambrosetti and Rabinowitz [1], Ding found a suitable subspace

X of the space of the variations on which he performed the minmax argument to the

restricted functional.

Later on, many authors proved the existence of changing sign solutions using other kinds

of variational methods (see [2, 3] and the references therein). Finally in a couple of recent

works [6, 7], del Pino, Musso, Pacard, and Pistoia found changing sign solutions, different

from those of Ding, by using a superposition of positive and negative bubbles arranged

on some special sets.

In the CR case, the (variational) positive solutions to the equation (1) were completely

classified by Jerison and Lee in [12]. In [16], we proved that there exist changing sign

solutions to (1) using a very particular group of isometries, namely the one generated by

the Reeb vector field of the contact form θ on S2n+1. Using the standard Hopf fibration,

we showed that the restricted functional satisfies the Palais-Smale condition by showing

that the new space of variation is identified with a Sobolev space on a complex projective

space: in particular, due to the very special symmetry, we were able to switch from a

critical subelliptic problem to a subcritical elliptic one.

Here we will show that there exist many complex group actions that lead to changing sign

solutions, each of them having different symmetries. Moreover in these general cases one

cannot use any analogue of the Hopf fibration, therefore we will prove the compactness

condition by using a general bubbling behavior of the Palais-Smale sequences, that in our

situation will lead to a contradiction on the boundedness of the energy.

Finally, we recall that in literature there are many other existence and multiplicity results

about Yamabe type equations in different settings: we address the reader for instance to
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the papers [13], [23], [18], [17], [19], [20], [14] [15] and the references therein.

2. Structure of the equation and group actions

Let us now set

q∗ =
2Q

Q− 2

and let us consider the variational problem on the sphere associated to the following

functional

I : S1(S2n+1)→ R, I(v) =
1

2

∫
S2n+1

(
|Dθv|2 + cnv

2
)
− 1

q∗

∫
S2n+1

|v|q∗ .

Here |Dθv| stands for the Webster norm of the contact gradient Dθv, where Dθ =

{X1, Y1, . . . , Xn, Yn} is an orthonormal basis of ker(θ); for any j = 1, . . . , n we set

Yj = JXj with J the standard complex structure on Cn+1: if we identify Cn+1 ' R2n+2

with

z = (z1, . . . , zn+1) ' (x1, y1, . . . , xn+1, yn+1),

then J is the block matrix

J =



0 −1

1 0
02×2 . . . 02×2

02×2
0 −1

1 0

. . . 02×2

... 02×2 . . .
0 −1

1 0


.

We are then looking for critical points of I, knowing that any variational solution of (1)

is actually a classical solution ([9, 10]).

The exponent q∗ is called critical since the embedding

S1(S2n+1) ↪→ Lq
∗
(S2n+1)
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is continuous but not compact: due to this lack of compactness, I does not satisfy the

Palais-Smale condition.

However, we will prove the following

Theorem 2.1. There exists a sequence of solutions {vk} of (1), with∫
S2n+1

|vk|q
∗ −→∞, as k →∞.

Theorem 2.1 will imply that equation (1) has infinitely many changing sign solutions: in

fact, by the classification result by Jerison and Lee [12], all the positive solutions of the

equation (1) have the same energy.

Now, let us denote

U(n+ 1) = {g ∈ O(2n+ 2), gJ = Jg},

where O(2n+ 2) is the group of real valued (2n+ 2)× (2n+ 2) orthogonal matrices.

We explicitly note that the functional I is invariant under the action of the group U(n+1),

i.e.

I(v) = I(v ◦ g), ∀ g ∈ U(n+ 1).

If G is a subgroup of U(n+ 1), we define

XG = {v ∈ S1(S2n+1) : v ◦ g = v, ∀ g ∈ G}.

We are going to make the following assumptions on G:

(H1) XG is an infinite dimensional real vector space;

(H2) for any z0 ∈ S2n+1, the G-orbit of z0 has at least one accumulation point.

Example 2.2. As in Ding [8] we can consider, for any k ∈ {1, . . . , n}, the subgroups

Gk = U(k)× U(n+ 1− k) formed by the matrices g1 02k×2(n+1−k)

02(n+1−k)×2k g2


with g1 ∈ U(k) and g2 ∈ U(n+ 1− k).

The functions in S1(S2n+1) depending only on |z1| , |z2| (with z = (z1, z2), z1 ∈ Ck,

z2 ∈ Cn+1−k) belong to XGk
. Thus we immediately get that XGk

is infinite dimensional.
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Moreover, the Gk-orbits of any point contain at least a circle. Therefore Gk satisfies (H1)

and (H2).

We explicitly observe that, differently from Ding, we allow the case k = 1: basically this

is related to the fact that the orbit of any point under the action of U(1) is the circle S1,

instead the orbits related to O(1) are Z2.

The following is a more general situation than can happen in this regard.

Counterexample 2.3. For any m ∈ N, let us consider the subgroups Gm = Zm × U(n)

formed by the matrices 
 cos(2πj

m
) sin(−2πj

m
)

sin(2πj
m

) cos(2πj
m

)

 02×2n

02n×2 g

 ,

with j ∈ {0, . . . ,m − 1} and g ∈ U(n). These are subgroups of the group G1 defined in

the previous example. Thus, XGm are infinite dimensional. On the other hand, if we fix a

point z0 = (eit0 , 0) ∈ Cn+1, its Gm-orbit contains exactly m points. Therefore, the groups

Gm don’t satisfy our main assumption (H2).

Example 2.4. In [16] it has been considered the case of the one-parameter group GT

generated by the flow of the Reeb vector field T of θ. In our notations, GT is formed

by the matrices exp(tJ), t ∈ R, and it is a sub-group of any Gk. The orbits are always

great circles and our assumptions (H1) and (H2) are thus satisfied for GT : in particular

considering the following Hopf fibration

S1 ↪→ S2n+1 π−→ CP n

where the fibers are exactly the orbits of T , we have the identification XGT
' S1(CP n).

We can provide also examples in which the groups are not in block diagonal matrices.

Example 2.5. Let us consider the case n = 1, i.e. the case of S3, and let us define the

vector fields

X̃ = x2∂x1 + y2∂y1 − x1∂x2 − y1∂y2
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and

Ỹ = −y2∂x1 + x2∂y1 − y1∂x2 + x1∂y2.

Now we consider the one-parameter groups (GX̃ and GỸ , respectively) generated by X̃

and Ỹ : in other words,

GX̃ = {exp(tX̃) : t ∈ R}, GỸ = {exp(tỸ ) : t ∈ R}

where with some abuse of notation we can identify the vector fields with the matrices

X̃ =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 and Ỹ =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 .

Such groups are contained in U(2) since X̃ and Ỹ are skew-symmetric and they commute

with J . Moreover, the vector fields are well-defined and non-vanishing everywhere in S3,

and their integral curves are always great circles. This proves in particular that GX̃ and

GỸ satisfy our hypotheses (H1) and (H2).

Let us observe that also the group GT̃ generated by the vector field identified with the

matrix

J̃ =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


satisfies our assumptions. Indeed, any matrix A in the Lie algebra gives rise to a linear

isometry φAt of S3 in the following sense
d

dt
φAt (z) = AφAt (z)

φA0 (z) = z.

Geometrically, the isometry φJt is given by the integral curves of the Reeb vector field T

and the functions which are constant along T are the ones considered in [16]; whereas
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the isometry φJ̃t is given by the integral curves of T̃ which is the Reeb vector field of the

“dual” contact form θ̃ (the one with J̃ as complex structure instead of J). Finally, the

isometries φX̃t and φỸt are given by the integral curves of the vector fields X̃ and Ỹ which

are right-invariant with respect to the standard group structure in S3: in particular they

commute with the left-invariant vector fields X and Y .

3. Proof of the Theorem 2.1

The proof is based on the following lemma by Ambrosetti and Rabinowitz, which gives a

condition on some particular subspaces of the space of variations on which it is allowed

to perform the minmax argument (see Theorems 3.13 and 3.14 in [1]).

Lemma 3.1. Let X be a closed subspace of S1(S2n+1). Suppose that:

(i) X is infinite-dimensional;

(ii) I|X , the restriction of I on X, satisfies Palais-Smale on X.

Then I|X has a sequence of critical points {vk} in X, such that∫
S2n+1

|vk|q
∗ −→∞, as k →∞.

Now, suppose we are given G such that XG satisfies (H1) and (H2). In order to apply

the previous Lemma we need to show that the restricted functional I|XG is Palais-Smale.

We will argue by contradiction, namely: we will consider a general Palais-Smale sequence

and, since there is a precise characterization for these last ones, we will see that if Palais-

Smale is violated then bubbling occurs, and the concentration set is finite and discrete,

therefore the hypothesis (H2) and the invariance given by the group action will lead to a

contradiction on the boundedness of the energy.

Hence, we have the following

Lemma 3.2. Let G be a subgroup of U(n+1) that satisfies (H2). Then I|XG, the restriction

of I on XG, satisfies the Palais-Smale compactness condition on XG.

Proof. Let us first recall a general bubbling behavior of the Palais-Smale sequences (P-S)

of the functional I, [5]. Let {vk} be a (P-S)c sequence, that is

I(vk)→ c, I ′(vk)→ 0
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as k → ∞. Then there exist m ≥ 0, m sequences zjk → zj ∈ S2n+1 (for 1 ≤ j ≤ m),

m sequences of positive numbers Rj
k converging to zero, and a solution v∞ ∈ S1(S2n+1),

such that up to a subsequence

vk = v∞ +
m∑
j=1

vk,j + o(1), as k →∞.

where vk,j are bubbles concentrating in zjk with concentrations Rj
k.

Moreover,

(2) I(vk) = I(v∞) +
m∑
j=1

I(vj) + o(1), as k →∞.

The important claim for what we need is that the blow-up set

Θ = {zj ∈ S2n+1, 1 ≤ j ≤ m}

is discrete and finite. Now we are looking at the functional I|XG , so we have that our (P-S)

sequence is invariant under the action of G and this means that if z ∈ Θ is a concentration

point, then the whole orbit of z would be, which is impossible under our assumption. In

particular this would contradict the energy quantization (2).

Indeed, let us assume for the sake of simplicity that we have only one concentration point

z0 ∈ Θ and let (gi)1≤i≤l be l elements in G: then gi · z0 are also concentration points in

Θ. In particular

(3) c = lim
k→∞

I(vk) = I(v∞) +
l∑

i=1

I(v0) = I(v∞) + lI(v0)

with v0 the bubble concentrating at z0. Now we observe that I(v0) 6= 0, since from the

equation satisfied by v0 we have that∫
S2n+1

|Dθv0|2 + c(n)v20 =

∫
S2n+1

|v0|q
∗
.

Therefore

I(v0) =
(1

2
− 1

q∗

)∫
S2n+1

|v0|q
∗

and this last quantity is different from zero if bubbling occurs.

Finally, since G satisfies the hypothesis (H2), the orbit of z0 has at least one accumulation
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point on the sphere, therefore Θ contains infinitely many points: hence, by letting l→∞

in (3), we get a contradiction. �

Now we will prove the main theorem.

Proof. (of Theorem 2.1)

Let us take any G subgroup of U(n + 1) that satisfies assumptions (H1) and (H2): the

examples in Section 2 provide the existence of a large class of such groups. By the previous

lemma, we have that I|XG satisfies Palais-Smale on XG. Therefore XG satisfies conditions

(i) and (ii) in the lemma by Ambrosetti and Rabinowitz, so that I|XG has a sequence of

critical points {vk} in XG, such that∫
S2n+1

|vk|q
∗ −→∞, as k →∞.

On the other hand, we have that the functional I is invariant under the action of G.

By the Principle of Symmetric Criticality [22], this implies that any critical point of the

restriction I|XG is also a critical point of I on the whole space of variations S1(S2n+1).

This ends the proof. �
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