Abstract. We will show that the CR-Yamabe equation has several families of infinitely many changing sign solutions, each of them having different symmetries. The problem is variational but it is not Palais-Smale: using different complex group actions on the sphere, we will find many closed subspaces on which we can apply the minmax argument.

Sunto. Proveremo che l’equazione di Yamabe CR ammette diverse famiglie di (infinito) soluzioni a segno non costante, ognuna di esse con una distinta simmetria. Il problema è variazionale, ma non Palais-Smale: usando distinte azioni di gruppo sulla sfera, troveremo diversi sottospazi chiusi su cui poter applicare l’argomento di minmax.

2010 MSC. 35J20, 35B33, 58E40

Keywords. Sub-elliptic PDE, Critical points theory, Minimax method

1. Introduction

The results in this note are obtained in collaboration with Ali Maalaoui and Giulio Tralli (see [16], [21]).

We will show the existence of several families of infinitely many changing sign solutions of the following sub-Riemannian Yamabe equation on the standard CR-sphere \((S^{2n+1}, \theta)\)

\[
-\Delta_{\theta} v + c_n v = |v|^{\frac{Q}{Q-2}} v, \quad v \in S^1(S^{2n+1}),
\]

where \(\theta\) is the standard Liouville (contact) form, \(\Delta_{\theta}\) denotes the related sub-Laplacian, \(S^1(S^{2n+1})\) is the Folland-Stein Sobolev type space on the sphere, \(Q = 2n + 2\) and \(c_n\) is a
suitable dimensional positive constant related to the (constant) Webster curvature of the
sphere (see [11] for a full detailed exposition).

The problem is variational but, as in the Riemannian case, the functional associated with
the equation (1) is not Palais-Smale.

For the classical Yamabe equation on \mathbb{R}^n, after the classification of the positive solutions
(bubbles) in [4], the first result about changing sign solutions was proved by Ding in [8].

Following the analysis by Ambrosetti and Rabinowitz [1], Ding found a suitable subspace X
of the space of the variations on which he performed the minmax argument to the
restricted functional.

Later on, many authors proved the existence of changing sign solutions using other kinds
of variational methods (see [2, 3] and the references therein). Finally in a couple of recent
works [6, 7], del Pino, Musso, Pacard, and Pistoia found changing sign solutions, different
from those of Ding, by using a superposition of positive and negative bubbles arranged
on some special sets.

In the CR case, the (variational) positive solutions to the equation (1) were completely
classified by Jerison and Lee in [12]. In [16], we proved that there exist changing sign
solutions to (1) using a very particular group of isometries, namely the one generated by
the Reeb vector field of the contact form θ on S^{2n+1}. Using the standard Hopf fibration,
we showed that the restricted functional satisfies the Palais-Smale condition by showing
that the new space of variation is identified with a Sobolev space on a complex projective
space: in particular, due to the very special symmetry, we were able to switch from a
critical subelliptic problem to a subcritical elliptic one.

Here we will show that there exist many complex group actions that lead to changing sign
solutions, each of them having different symmetries. Moreover in these general cases one
cannot use any analogue of the Hopf fibration, therefore we will prove the compactness
condition by using a general bubbling behavior of the Palais-Smale sequences, that in our
situation will lead to a contradiction on the boundedness of the energy.

Finally, we recall that in literature there are many other existence and multiplicity results
about Yamabe type equations in different settings: we address the reader for instance to
2. Structure of the equation and group actions

Let us now set

\[q^* = \frac{2Q}{Q - 2} \]

and let us consider the variational problem on the sphere associated to the following functional

\[I : S^1(S^{2n+1}) \to \mathbb{R}, \quad I(v) = \frac{1}{2} \int_{S^{2n+1}} (|D_\theta v|^2 + c_nv^2) - \frac{1}{q^*} q^* \int_{S^{2n+1}} |v|^{q^*}. \]

Here \(|D_\theta v| \) stands for the Webster norm of the contact gradient \(D_\theta v \), where \(D_\theta = \{X_1, Y_1, \ldots, X_n, Y_n\} \) is an orthonormal basis of \(\ker(\theta) \); for any \(j = 1, \ldots, n \) we set \(Y_j = JX_j \) with \(J \) the standard complex structure on \(\mathbb{C}^{n+1} \); if we identify \(\mathbb{C}^{n+1} \simeq \mathbb{R}^{2n+2} \) with

\[z = (z_1, \ldots, z_{n+1}) \simeq (x_1, y_1, \ldots, x_{n+1}, y_{n+1}), \]

then \(J \) is the block matrix

\[
J = \begin{pmatrix}
0 & -1 & 0_{2 \times 2} & \ldots & 0_{2 \times 2} \\
1 & 0 & 0_{2 \times 2} & \ldots & 0_{2 \times 2} \\
0_{2 \times 2} & 0 & -1 & \ldots & 0_{2 \times 2} \\
& 0_{2 \times 2} & 0 & \ldots & 0_{2 \times 2} \\
& & \ddots & \ddots & \ddots \\
& & & 0_{2 \times 2} & 0 & -1 \\
& & & & 1 & 0
\end{pmatrix}.
\]

We are then looking for critical points of \(I \), knowing that any variational solution of (1) is actually a classical solution ([9, 10]).

The exponent \(q^* \) is called critical since the embedding

\[S^1(S^{2n+1}) \hookrightarrow L^{q^*}(S^{2n+1}) \]
is continuous but not compact: due to this lack of compactness, I does not satisfy the Palais-Smale condition.

However, we will prove the following

Theorem 2.1. There exists a sequence of solutions $\{v_k\}$ of (1), with

$$\int_{S^{2n+1}} |v_k|^q \to \infty, \quad \text{as} \quad k \to \infty.$$

Theorem 2.1 will imply that equation (1) has infinitely many changing sign solutions: in fact, by the classification result by Jerison and Lee [12], all the positive solutions of the equation (1) have the same energy.

Now, let us denote

$$U(n+1) = \{ g \in O(2n+2), \ gJ = Jg \},$$

where $O(2n+2)$ is the group of real valued $(2n+2) \times (2n+2)$ orthogonal matrices.

We explicitly note that the functional I is invariant under the action of the group $U(n+1)$, i.e.

$$I(v) = I(v \circ g), \quad \forall \ g \in U(n+1).$$

If G is a subgroup of $U(n+1)$, we define

$$X_G = \{ v \in S^1(S^{2n+1}) : v \circ g = v, \ \forall \ g \in G \}.$$

We are going to make the following assumptions on G:

(H1) X_G is an infinite dimensional real vector space;

(H2) for any $z_0 \in S^{2n+1}$, the G-orbit of z_0 has at least one accumulation point.

Example 2.2. As in Ding [8] we can consider, for any $k \in \{1, \ldots, n\}$, the subgroups

$G_k = U(k) \times U(n+1-k)$

formed by the matrices

$$\begin{pmatrix}
g_1 & 0_{2k \times 2(n+1-k)} \\
0_{2(n+1-k) \times 2k} & g_2
\end{pmatrix}$$

with $g_1 \in U(k)$ and $g_2 \in U(n+1-k)$.

The functions in $S^1(S^{2n+1})$ depending only on $|z_1|, |z_2|$ (with $z = (z_1, z_2)$, $z_1 \in \mathbb{C}^k$, $z_2 \in \mathbb{C}^{n+1-k}$) belong to X_{G_k}. Thus we immediately get that X_{G_k} is infinite dimensional.
Moreover, the G_k-orbits of any point contain at least a circle. Therefore G_k satisfies $(H1)$ and $(H2)$.

We explicitly observe that, differently from Ding, we allow the case $k = 1$: basically this is related to the fact that the orbit of any point under the action of $U(1)$ is the circle S^1, instead the orbits related to $O(1)$ are Z_2.

The following is a more general situation than can happen in this regard.

Counterexample 2.3. For any $m \in \mathbb{N}$, let us consider the subgroups $G_m = Z_m \times U(n)$ formed by the matrices

$$
\begin{pmatrix}
\cos\left(\frac{2\pi j}{m}\right) & \sin\left(-\frac{2\pi j}{m}\right) \\
\sin\left(\frac{2\pi j}{m}\right) & \cos\left(\frac{2\pi j}{m}\right)
\end{pmatrix}
\begin{pmatrix}
\mathbf{0}_{2 \times 2n} \\
g
\end{pmatrix},
$$

with $j \in \{0, \ldots, m-1\}$ and $g \in U(n)$. These are subgroups of the group G_1 defined in the previous example. Thus, X_{G_m} are infinite dimensional. On the other hand, if we fix a point $z_0 = (e^{it_0}, 0) \in \mathbb{C}^{n+1}$, its G_m-orbit contains exactly m points. Therefore, the groups G_m don’t satisfy our main assumption $(H2)$.

Example 2.4. In [16] it has been considered the case of the one-parameter group G_T generated by the flow of the Reeb vector field T of θ. In our notations, G_T is formed by the matrices $\exp(tJ)$, $t \in \mathbb{R}$, and it is a sub-group of any G_k. The orbits are always great circles and our assumptions $(H1)$ and $(H2)$ are thus satisfied for G_T: in particular considering the following Hopf fibration

$$S^1 \hookrightarrow S^{2n+1} \xrightarrow{\pi} \mathbb{C}P^n$$

where the fibers are exactly the orbits of T, we have the identification $X_{G_T} \simeq S^1(\mathbb{C}P^n)$.

We can provide also examples in which the groups are not in block diagonal matrices.

Example 2.5. Let us consider the case $n = 1$, i.e. the case of S^3, and let us define the vector fields

$$\tilde{X} = x_2 \partial x_1 + y_2 \partial y_1 - x_1 \partial x_2 - y_1 \partial y_2$$
and
\[\tilde{Y} = -y_2\partial x_1 + x_2\partial y_1 - y_1\partial x_2 + x_1\partial y_2. \]

Now we consider the one-parameter groups \((\mathbb{G}_{\tilde{X}} \text{ and } \mathbb{G}_{\tilde{Y}}, \text{ respectively}) \) generated by \(\tilde{X} \) and \(\tilde{Y} \): in other words,
\[\mathbb{G}_{\tilde{X}} = \{ \exp(t\tilde{X}) : t \in \mathbb{R} \}, \quad \mathbb{G}_{\tilde{Y}} = \{ \exp(t\tilde{Y}) : t \in \mathbb{R} \} \]
where with some abuse of notation we can identify the vector fields with the matrices
\[\tilde{X} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \tilde{Y} = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}. \]

Such groups are contained in \(\mathbb{U}(2) \) since \(\tilde{X} \) and \(\tilde{Y} \) are skew-symmetric and they commute with \(J \). Moreover, the vector fields are well-defined and non-vanishing everywhere in \(S^3 \), and their integral curves are always great circles. This proves in particular that \(\mathbb{G}_{\tilde{X}} \) and \(\mathbb{G}_{\tilde{Y}} \) satisfy our hypotheses \((H1)\) and \((H2)\).

Let us observe that also the group \(\mathbb{G}_{\tilde{T}} \) generated by the vector field identified with the matrix
\[\tilde{J} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \]
satisfies our assumptions. Indeed, any matrix \(A \) in the Lie algebra gives rise to a linear isometry \(\phi_t^A \) of \(S^3 \) in the following sense
\[
\begin{cases}
\frac{d}{dt} \phi_t^A(z) = A\phi_t^A(z) \\
\phi_0^A(z) = z.
\end{cases}
\]

Geometrically, the isometry \(\phi_t^I \) is given by the integral curves of the Reeb vector field \(T \) and the functions which are constant along \(T \) are the ones considered in [16]; whereas
the isometry \(\phi_t^J \) is given by the integral curves of \(\tilde{T} \) which is the Reeb vector field of the “dual” contact form \(\tilde{\theta} \) (the one with \(\tilde{J} \) as complex structure instead of \(J \)). Finally, the isometries \(\phi_t^{\tilde{X}} \) and \(\phi_t^{\tilde{Y}} \) are given by the integral curves of the vector fields \(\tilde{X} \) and \(\tilde{Y} \) which are right-invariant with respect to the standard group structure in \(S^3 \): in particular they commute with the left-invariant vector fields \(X \) and \(Y \).

3. Proof of the Theorem 2.1

The proof is based on the following lemma by Ambrosetti and Rabinowitz, which gives a condition on some particular subspaces of the space of variations on which it is allowed to perform the minmax argument (see Theorems 3.13 and 3.14 in [1]).

Lemma 3.1. Let \(X \) be a closed subspace of \(S^1(S^{2n+1}) \). Suppose that:

(i) \(X \) is infinite-dimensional;

(ii) \(I|_X \), the restriction of \(I \) on \(X \), satisfies Palais-Smale on \(X \).

Then \(I|_X \) has a sequence of critical points \(\{v_k\} \) in \(X \), such that

\[
\int_{S^{2n+1}} |v_k|^q \to \infty, \quad \text{as} \quad k \to \infty.
\]

Now, suppose we are given \(G \) such that \(X_G \) satisfies (H1) and (H2). In order to apply the previous Lemma we need to show that the restricted functional \(I|_{X_G} \) is Palais-Smale. We will argue by contradiction, namely: we will consider a general Palais-Smale sequence and, since there is a precise characterization for these last ones, we will see that if Palais-Smale is violated then bubbling occurs, and the concentration set is finite and discrete, therefore the hypothesis (H2) and the invariance given by the group action will lead to a contradiction on the boundedness of the energy.

Hence, we have the following

Lemma 3.2. Let \(G \) be a subgroup of \(\mathbb{U}(n+1) \) that satisfies (H2). Then \(I|_{X_G} \), the restriction of \(I \) on \(X_G \), satisfies the Palais-Smale compactness condition on \(X_G \).

Proof. Let us first recall a general bubbling behavior of the Palais-Smale sequences (P-S) of the functional \(I \), [5]. Let \(\{v_k\} \) be a (P-S)\(_c\) sequence, that is

\[
I(v_k) \to c, \quad I'(v_k) \to 0
\]
as \(k \to \infty \). Then there exist \(m \geq 0 \), \(m \) sequences \(z^j_k \to z_j \in S^{2n+1} \) (for \(1 \leq j \leq m \)), \(m \) sequences of positive numbers \(R^j_k \) converging to zero, and a solution \(v_\infty \in S^1(S^{2n+1}) \), such that up to a subsequence

\[
v_k = v_\infty + \sum_{j=1}^{m} v_{k,j} + o(1), \quad \text{as} \quad k \to \infty.
\]

where \(v_{k,j} \) are bubbles concentrating in \(z^j_k \) with concentrations \(R^j_k \).

Moreover,

\[
I(v_k) = I(v_\infty) + \sum_{j=1}^{m} I(v_j) + o(1), \quad \text{as} \quad k \to \infty.
\]

The important claim for what we need is that the blow-up set

\[
\Theta = \{ z_j \in S^{2n+1}, \quad 1 \leq j \leq m \}
\]

is discrete and finite. Now we are looking at the functional \(I|_{X_G} \), so we have that our (P-S) sequence is invariant under the action of \(G \) and this means that if \(z \in \Theta \) is a concentration point, then the whole orbit of \(z \) would be, which is impossible under our assumption. In particular this would contradict the energy quantization (2).

Indeed, let us assume for the sake of simplicity that we have only one concentration point \(z_0 \in \Theta \) and let \((g_i)_{1 \leq i \leq l} \) be \(l \) elements in \(G \): then \(g_i \cdot z_0 \) are also concentration points in \(\Theta \). In particular

\[
c = \lim_{k \to \infty} I(v_k) = I(v_\infty) + \sum_{i=1}^{l} I(v_0) = I(v_\infty) + lI(v_0)
\]

with \(v_0 \) the bubble concentrating at \(z_0 \). Now we observe that \(I(v_0) \neq 0 \), since from the equation satisfied by \(v_0 \) we have that

\[
\int_{S^{2n+1}} |D_\theta v_0|^2 + c(n)v_0^2 = \int_{S^{2n+1}} |v_0|^{q^*}.
\]

Therefore

\[
I(v_0) = \left(\frac{1}{2} - \frac{1}{q^*} \right) \int_{S^{2n+1}} |v_0|^{q^*}
\]

and this last quantity is different from zero if bubbling occurs.

Finally, since \(G \) satisfies the hypothesis \((H2)\), the orbit of \(z_0 \) has at least one accumulation
point on the sphere, therefore Θ contains infinitely many points: hence, by letting $l \to \infty$ in (3), we get a contradiction.

Now we will prove the main theorem.

Proof. (of Theorem 2.1)

Let us take any G subgroup of $U(n + 1)$ that satisfies assumptions $(H1)$ and $(H2)$: the examples in Section 2 provide the existence of a large class of such groups. By the previous lemma, we have that $I|_{X_G}$ satisfies Palais-Smale on X_G. Therefore X_G satisfies conditions (i) and (ii) in the lemma by Ambrosetti and Rabinowitz, so that $I|_{X_G}$ has a sequence of critical points $\{v_k\}$ in X_G, such that

$$\int_{S^{2n+1}} |v_k|^q \to \infty, \quad \text{as } k \to \infty.$$

On the other hand, we have that the functional I is invariant under the action of G. By the Principle of Symmetric Criticality [22], this implies that any critical point of the restriction $I|_{X_G}$ is also a critical point of I on the whole space of variations $S^1(S^{2n+1})$. This ends the proof.

\[\square\]

References

GROUP ACTIONS AND THE CR-YAMABE EQUATION

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 5 - 40126 Bologna

E-mail address: vittorio.martino3@unibo.it