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Abstract. We present a generalisation of Meyers-Serrin theorem, in which we replace

the standard weak derivatives in open subsets of Rm with finite families of linear dif-

ferential operators defined on smooth sections of vector bundles on a (not necessarily

compact) manifold X.

Sunto. Presentiamo una generalizzazione del teorema di Meyers-Serrin, in cui sosti-

tuiamo le derivate deboli in sottoinsiemi aperti di Rm con famiglie finite di operatori

differenziali lineari, definiti su sezioni regolari di fibrati vettoriali su una varietà (non

necessariamente compatta) X.
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Let us denote by Wm,p(Ω) the class of elements f in Lp(Ω) whose derivatives ∂αf of

order less than or equal to m (in the sense of distributions) belong to Lp(Ω). Wm,p(Ω)

becomes a Banach space if it is equipped with its natural norm

(1) ‖f‖Wm,p(Ω) := (
∑
|α|≤m

‖∂αf‖pLp(Ω))
1/p.

Let us also denote by Hm,p(Ω) the closure of C∞(Ω) ∩Wm,p(Ω) in Wm,p(Ω). Then, in a

quite famous paper ([7]), N.G. Meyers and J. Serrin proved that, in case 1 ≤ p <∞,

Hm,p(Ω) = Wm,p(Ω).
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This identity holds for every open subset Ω of Rn, regardless of the regularity of its

boundary. Observe that, as the inclusion Hm,p(Ω) ⊆ Wm,p(Ω) is obvious, Meyers-Serrin

theorem can be also stated by saying that C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω).

The main aim of this seminar is to illustrate a generalisation of this result that we

have recently obtained (see [5]), which is applicable to many different situations. A first

possible generalisation of the class of spaces Wm,p(Ω) could be obtained in the following

way: take a finite family of linear partial differential operators P = {P1, . . . , Ps} with

smooth coefficients in Ω. Then we could consider the class WP,p(Ω) of elements f in Lp(Ω)

such that Pjf (in the sense of distributions) belongs to Lp(Ω) for each j ∈ {1, . . . , s}. It is

straightforward to check that WP,p(Ω) is a Banach space if it is equipped with the norm

‖f‖WP,p(Ω) := (‖f‖pLp(Ω) +
s∑
j=1

‖Pjf‖pLp(Ω))
1/p.

Analogous spaces and related Meyers-Serrin theorems, were considered in connection to

the so called Lavrentiev phenomenon (see, for example, [3], [4]). Sobolev spaces con-

structed as domains of (even fractional) powers of sublaplacians for stratified Lie groups

were also studied in detain in [2].

More generally, we could consider also differential operators in smooth manifolds, not

only defined in spaces of scalar functions, but also defined on sections of vector bundles.

So we begin by recalling some well known definitions (see, for example, [8]): let X be a

smooth abstract m− dimensional manifold without boundary. We always assume that

its topology has a countable basis of open sets, in order to have at disposal the tool of

partitions of unity. Suppose that (E, πE) and (F, πF ) are vector bundles on X. This

means that:

(i) E is a smooth manifold, πE ∈ C∞(E;X);

(ii) Ex := π−1({x}) has the structure of an lE− dimensional vector space on C (lE ∈ N0);

(iii) ∀x0 ∈ X there exists a local chart (Φ, U) in X around x0 (U open in X, Φ : U →

Φ(U) ⊆ Rm diffeomorphism) and a smooth diffeomorphism ΨE : π−1
E (U) → Φ(U)× ClE ,

such that, for x ∈ U , if v ∈ Ex,

ΨE(v) = (Φ(x), LE(x)v)
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with LE(x) linear isomorphism between Ex and ClE .

We denote by ΓC∞(X,E) the class of smooth sections with values in E, that is, the

class of elements f ∈ C∞(X,E) such that f(x) ∈ Ex ∀x ∈ X, and with ΓC∞0 (X,E) the

class of elements in ΓC∞(X,E) with compact support. Given φ : Φ(U) → ClE , we can

consider the following section fφ : U → E:

(2) fφ(x) = LE(x)−1(φ(Φ(x))).

If φ ∈ C∞0 (Φ(U);ClE), then fφ, extended with zero outside U , belongs to ΓC∞0 (X,E).

Let P be a linear mapping from ΓC∞(X,E) to ΓC∞(X,F ). We define the following

operator PΦ in C∞0 (Φ(U),ClE), with values in C∞(Φ(U),ClF ):

(3) PΦ(φ)(y) := LF (Φ−1(y))P (fφ)(Φ−1(y)).

We say that P is a differential operator of order less than or equal to k if, for every

system (Φ, U, LE, LF ), PΦ is a differential operator in Φ(U), that is,

PΦ(φ)(y) =
∑
|α|≤k

Aα(y)Dα
yφ(y),

with Aα(y) lF × lE−matrix, depending smoothly on y. We say that P is elliptic of order

k if PΦ is elliptic for every (Φ, U), that is, if lE = lF and the matrix
∑
|α|=k ξ

αAα(y) is

invertible ∀y ∈ Φ(U), ∀ξ ∈ Rm \ {0}.

Suppose now that the manifold X is equipped with a smooth density µ. We recall that

this means that a positive Borel measure µ is fixed in X, so that, ∀(Φ, U) local chart in

X there exist µΦ ∈ C∞(Φ(U)), positive, such that, if A is a Borel subset of U

µ(A) =

∫
Φ(A)

µΦ(y)dy.

Let (E, πE) be a vector bundle on X. We fix a Hermitian structure (smoothly varying

inner product (·, ·)Ex in each Ex). Let p ∈ [1,∞). We denote by ΓLpµ(X,E) the class of

measurable section of E, i.e., measurable functions f : X → E, such that f(x) ∈ Ex for

almost every x and

‖f‖pΓ
L
p
µ

(X,E) :=

∫
X

||f(x)||pExdµ(x) <∞.

As usual, we do not distinguish sections coinciding almost everywhere.
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Let P be a differential operator between the vector bundles (E, πE) and (F, πF ), both

equipped with Hermitian structures (of course, this means that P maps ΓC∞(X,E) into

ΓC∞(X,F )). Then one can show (see [9], Proposition IV.2.8) that there exists a unique

differential operator P ∗ (the adjoint of P ) between (F, πF ) and (E, πE) such that, ∀f ∈

ΓC∞(X,E), ∀g ∈ ΓC∞0 (X,F )∫
X

(Pf(x), g(x))Fxµ(dx) =

∫
X

(f(x), P ∗g(x))Exµ(dx).

By simple computation, one can draw the following local expression for P ∗: if f = fφ as

in (2) and PΦ is the operator defined in (3), one has, for x ∈ U ,

(4) P ∗g(x) =
1

µΦ(Φ(x))
LE(x)∗P ∗Φ(Mψ)(Φ(x)),

with P ∗Φ adjoint of PΦ,

(5) ψ(y) = LF (Φ−1(y))g(Φ−1(y)), (y ∈ Φ(U)),

(6) M(y) = µΦ(y)LF (Φ−1(y))−1∗LF (Φ−1(y))−1.

This suggests the possibility of defining Pf in cases when f is not smooth. So we denote

by ΓL1
loc

(X,E) the class of locally summable sections. It is not difficult to see that this

class does not depend on µ, as far as we limit ourselves to considering smooth densities.

We can give the following definition:

Definition 1. Let P be a differential operator between the vector bundles (E, πE) and

(F, πF ), both equipped with Hermitian structures. Let f ∈ ΓL1
loc

(X,E) and h ∈ ΓL1
loc

(X,F ).

We write Pf = h if, ∀g ∈ ΓC∞0 (X,F ),∫
X

(h(x), g(x))Fxµ(dx) =

∫
X

(f(x), P ∗g(x))Exµ(dx).

One can show that, although P ∗ depends on the Hermitian structures and µ, this

definition of Pf is independent of them.

Lemma 1. Using the notation (2) and (3), if f = fφ ∈ ΓLploc(U,E) and Pf ∈ ΓLploc(U,E)

in the sense of Definition 1, PΦφ ∈ Lploc(Φ(U),ClF ), where, of course, PΦφ has a meaning

in the sense of distributions.
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Proof. Let g ∈ ΓC∞0 (U, F ). We set ψ(y) := LF (Φ−1(y))g(Φ−1(y)). Of course, ψ ∈

C∞0 (Φ(U),ClF ). Employing (4), we have

∫
U

(f(x), P ∗g(x))Exµ(dx) =
∫

Φ(U)
(φ(y), P ∗Φ(Mψ)(y))ClEdy

= (M(y)∗PΦφ(y), ψ(y)),

with (·, ·) standing for the duality (D′(Φ(U),ClF ), C∞0 (Φ(U),ClF )). On the other hand,∫
U

(Pf(x), g(x))Fxµ(dx) =

∫
Φ(U)

(µΦ(y)LF (Φ−1(y))−1∗Pf(Φ−1(y)), ψ(y))ClF dy,

so that

PΦφ(y) = µΦ(y)M(y)∗−1LF (Φ−1(y))−1∗Pf(Φ−1(y)) ∈ Lploc(Φ(U);ClF ).

�

Finally, let f ∈ ΓL1
loc

(X,E). We write f ∈ ΓWn,p
loc

(X,E) if, for all systems (Φ, U, LE),

y → LE(Φ−1(y))f(Φ−1(y)) is in W n,p
loc (φ(U);ClE). This definition also does not depend on

µ and the Hermitian structures.

After these preliminaries, we introduce our assumptions:

(A1) X is a smooth m− dimensional manifold without boundary, with a countable basis

of open sets. µ is a fixed smooth density in X.

(A2) (E, πE), (F1, πF1), . . . , (Fs, πFs) are vector bundles on X. Each of them is equipped

with a Hermitian structure.

For simplicity we write E,F1, . . . , Fs instead of (E, πE), (F1, πF1), . . . , (Fs, πFs).

(A3) For each j ∈ {1, . . . , s} Pj is a differential operator between E and Fj.

Suppose that (A1)-(A3) are satisfied. We define, ∀p ∈ [1,∞),

(7) ΓWP,pµ
(X,E) := {f ∈ ΓLpµ(X,E) : Pjf ∈ ΓLpµ(X,Fj) ∀j ∈ {1, . . . , s}}.
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It is straightforward to check that ΓWP,pµ
(X,E) becomes a Banach space if it is equipped

with the norm

(8) ‖f‖Γ
W
P,p
µ

(X,E) := (‖f‖pΓ
L
p
µ

(X,E) +
s∑
j=1

‖Pjf‖pΓ
L
p
µ

(X,Fj)
)1/p.

Now we are able to state the following generalisations of Meyers-Serrin theorem:

Theorem 1. Suppose that (A1)-(A3) are fulfilled and that the operators P1, . . . , Ps are

of order less than or equal to k, with k ∈ N. Then, if WP,p
µ (X,E) ⊆ ΓWk−1,p

loc
(X,E),

ΓC∞(X,E) ∩WP,p
µ (X,E) is dense in WP,p

µ (X,E).

We show some examples and applications. The first result immediately follows from

Theorem 1.

Corollary 1. Suppose that (A1)-(A3) hold and the operators P1, . . . , Ps are of order not

exceeding one. Then ΓC∞(X,E) ∩WP,p
µ (X,E) is dense in WP,p

µ (X,E).

A less obvious result is the following:

Proposition 1. Suppose that (A1)-(A3) hold. Moreover, Ps is elliptic of order k and

P1, . . . , Ps−1 are of order less than or equal to k+ 1 in case p ∈ (1,∞), of order less than

or equal to k in case p = 1. Then ΓC∞(X,E) ∩WP,p
µ (X,E) is dense in WP,p

µ (X,E).

Proof. If p ∈ (1,∞), it is a consequence of standard elliptic theory in Rm and Lemma

1 that from u ∈ ΓLpµ(X,E) and Psu ∈ ΓLpµ(X,E) it follows u ∈ ΓWk,p
loc

(X,E) (see [8],

Theorem 10.3.6). In case p = 1, it is proved in [5] that, if P is an l × l−elliptic system

of order k in Rm, u ∈ L1
loc(Rm;Cl) and Pu ∈ L1

loc(Rm;Cl), then ∀φ ∈ C∞0 (Rm) φu

belongs to the Besov space Bk
1,∞(Rm;Cl), which contains W k,1(Rm;Cl) and is contained

in W k−1,1(Rm;Cl2). As, if Ps is elliptic, PsΦ is elliptic for every system (Φ, U, LE, LFs), we

deduce, again from Lemma 1, that, from u ∈ ΓL1
µ
(X,E) and Psu ∈ ΓL1

µ
(X,E), it follows

u ∈ ΓWk−1,1
loc

(X,E), so that Theorem 1 is applicable. �

Remark 1. It is quite clear that it cannot be expected that Theorem 1 holds for p =∞.

Nevertheless, one can replace ΓL∞(X,E) with ΓC∩L∞(X,E), the Banach space of bounded
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continuous sections. The crucial condition becomes

{u ∈ ΓC∩L∞(X,E) : Pju ∈ ΓC∩L∞(X,Fj)∀j ∈ {1, . . . , s}} ⊆ ΓCk−1(X,E).

Proposition 1, in a weak form, analogous to the one valid in case p = 1, can be extended

to this case, because one can show that, if Ps is elliptic of order k, from u ∈ ΓC∩L∞(X,E)

and Psu ∈ ΓC∩L∞(X,E), it follows u ∈ ΓCk−1(X,E)

Before considering our last example (Sobolev spaces in not necessarily compact Rie-

mannian manifolds), we want to discuss the optimality of Theorem 1.

First of all, it is clear that the condition WP,p
µ (X,E) ⊆ ΓWk−1,p

loc
(X,E) is not necessary

to get the conclusion: for example, let X = Rm, µ the standard Lebesgue measure,

E = Rm × C the trivial bundle and assume that the operators P1, . . . , Ps have constant

coefficients and (for simplicity) are defined in C∞(Rm). Then ΓC∞(X,E) ∩WP,p
µ (X,E)

is dense in WP,p
µ (X,E). To show this, it suffices to consider the usual regularisation

procedure: fix ω ∈ C∞0 (Rm), with
∫
Rm ω(x)dx = 1 and, set, for ε > 0, ωε(x) := ε−mω(x

ε
).

Suppose, for simplicity, that u ∈ WP,p
µ (X,C). Then, as 1 ≤ p <∞, the convolutions (ωε ∗

u)ε>0 converge to u in Lp(Rm;C) (as ε→ 0) and, for each j ∈ {1, . . . , s}, (Pj(ωε ∗u))ε>0 =

(ωε ∗ Pju)ε>0 converge to Pju in Lp(Rm;C), regardless of the condition WP,p
µ (X,C) ⊆

ΓWk−1,p
loc

(X,C).

Neverthless, this condition is, in some sense, optimal, because it may happen that

WP,p
µ (X,C) ⊆ ΓWk−2,p

loc
(X,C) and ΓC∞(X,E) ∩WP,p

µ (X,E) is not dense in WP,p
µ (X,E).

In fact let us consider the following example.

Example 1. We consider the following operator P in R, equipped with the Lebesgue

measure:

Pu(x) = −xu(3)(x) + (x− 1)u(2)(x).

We set P := {P}. We take p ∈ (1,∞), write WP,p instead of WP,p(R,C), and start by

observing that

WP,p = {u ∈ Lp(R) : xu′′ ∈ W 1,p(R)}.

In fact, P = (1 − ∂) ◦ x∂2. Let u ∈ WP,p and set v = xu′′. Then v is a tempered

distribution and v − v′ = Pu ∈ Lp(R). Employing the Fourier transform F , we see that
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v = F−1((1− iξ)−1FPu), which belongs to W 1,p(R) because Pu ∈ Lp(R), on account of

the formula

v(x) =

∫ ∞
x

ex−yPu(y)dy.

We set f := Pu. We have that

u′′(x) = x−1v(x) = x−1v(0) + x−1

∫ x

0

v′(y)dy = x−1v(0) + h(x), x ∈ R \ {0},

with h(x) = x−1
∫ x

0
v′(y)dy. By Hardy’s inequality, h ∈ Lp(R). It follows that

(9) u′′(x) = v(0)p.v.(
1

x
) + h(x) + k(x),

with k distribution with support in {0}. From xu′′ = v it follows xk(x) = 0, which implies

k(x) = cδ(x). So from (9) we deduce

u′(x) = v(0) ln(|x|) +

∫ x

0

h(y)dy + cH(x) + const,

where we have denoted by H(x) the Heaviside function. We infer that u′ ∈ Lploc(R), so

that WP,p ⊆ W 1,p
loc (R). Nevertheless, WP,p is not contained in W 2,p

loc (R). In fact, set

u(x) := φ(x)x ln(|x|),

with φ ∈ C∞0 (R), φ(x) = 1 in some neighbourhood of 0. It is easily seen that u ∈ WP,p,

as

(10) xu′′(x) = 1,

in some neighbourhood of 0. u does not belong to W 2,p
loc (R), because

u′′(x) = p.v.(
1

x
)

in some neighbourhood of 0. Now we check that C∞(R)∩WP,p is not dense in WP,p. We

argue by contradiction: we suppose that there exists a sequence (uk)k∈N in C∞(R)∩WP,p,

such that

‖uk − u‖Lp(R) + ‖Puk − Pu‖Lp(R) → 0 (k →∞).

We set v := xu′′, vk := xu′′k. Then, as vk = F−1((1 − iξ)−1FPuk), (vk)k∈N converges to

v in W 1,p(R), implying that (vk(0))k∈N converges to v(0). However, evidently, vk(0) = 0,

while, by (10), v(0) = 1. We have reached a contradiction.
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We conclude by extending the theorem of Meyers-Serrin to (not necessarily compact)

Riemannian manifolds. We begin by defining the Sobolev space Wm,p(X), with X Rie-

mannian manifold. We take the measure µ induced by the metric in X and denote by

T (X) the tangent bundle. We recall that the Riemannian (or Levi-Civita) connection is

the unique connection in X, such that, ∀X, Y, Z ∈ ΓC∞(X,T (X)),

DX(Y )−DY (X) = [X, Y ],

with [X, Y ] commutator of X and Y , and

X(Y · Z) = DX(Y ) · Z + Y ·DX(Z),

with (X ·Y )(x) := X(x) ·x Y (x), ∀x ∈ X and ·x is, of course, the inner product in Tx(X).

In local coordinates, if X =
∑m

j=1Xj
∂
∂xj

and Y =
∑m

j=1 Yj
∂
∂xj

, we have

DX(Y ) =
m∑

i,j=1

Xi
∂Yj
∂xi

∂

∂xj
+

m∑
i,j,k=1

ΓkijXiYj
∂

∂xk
.

Here

D ∂
∂xi

(
∂

∂xj
) =

m∑
k=1

Γkij
∂

∂xk

where the functions Γkij are the so called Christoffel symbols.

Given X ∈ ΓC∞(X,T (X)), we can define DX(α) ∀α ∈ ΓC∞(X,T ∗⊗j(X)) in a unique

way so that the following conditions are satisfied:

(I) DX(α) ∈ ΓC∞(X,T ∗⊗j(X)) ∀α ∈ ΓC∞(X,T ∗⊗j(X));

(II) if f ∈ C∞(X), DX(f) = X(f);

(III) if α ∈ ΓC∞(X,T ∗(X)) and Y ∈ ΓC∞(X,T (X)),

(DX(α), Y ) = X((α, Y ))− (α,DX(Y )),

with (α, Y )(x) := (α(x), Y (x)) ∈ C∞(X);

(IV) if α ∈ ΓC∞(X,T ∗⊗j(X)) and β ∈ ΓC∞(X,T ∗⊗k(X)),

DX(α⊗ β) = DX(α)⊗ β + α⊗DX(β).
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So, we can easily deduce that, if X ∈ ΓC∞(X,T (X)), α ∈ ΓC∞(X,T ∗(X)) and, in local

coordinates, X =
∑m

i=1Xi
∂
∂xi

, α =
∑m

j=1 αjdxj, we have, again in local coordinates,

(11) DX(α) =
m∑

i,j=1

Xi
∂αj
∂xi

dxj −
m∑

i,j,k=1

ΓkijXiαkdxj.

Now we introduce the operators ∇j (j ∈ N), each of which is a differential operator from

C∞(X) to ΓC∞(X,T ∗⊗j(X)). If f ∈ C∞(X), we define ∇jf recursively: given ∇jf ∈

ΓC∞(X,T ∗⊗j(X)), we define ∇j+1f ∈ ΓC∞(X,T ∗⊗(j+1)(X)) setting, ∀X1, X2, . . . Xj+1 ∈

ΓC∞(X,T (X)),

(12) ∇j+1f(X1, X2, . . . , Xj+1) := DX1(∇jf)(X2, . . . , Xj+1).

So, for example, we have ∇1f = df =
∑m

j=1
∂f
∂xj
dxj (in local coordinates) and, from

(11),

∇2f =
m∑

i,j=1

∂2f

∂xixj
dxi ⊗ dxj −

m∑
i,j,k=1

Γkij
∂f

∂xk
dxi ⊗ dxj.

In general one can easily see that, in local coordinates,

(13) ∇jf =
m∑

i1,...,ij=1

(
∂jf

∂xi1 . . . dxij
+ Pi1,...,ij(f))dxi1 ⊗ · · · ⊗ dxij ,

with Pi1,...,ij(f) operator of order strict less than j. An outline of this theory can be found

in [6].

Now we equip each bundle T ∗⊗j(X) with a Hermitian structure in a natural way: if

α, β ∈ T ∗x (X), we set

(α, β)x := (V (α), V (β))x,

with V (α) ∈ Tx(X) such that (α,w) = (V (α), w)x, ∀w ∈ Tx(X). Next, we define (α, β)x,

with α, β ∈ T ∗⊗jx (X), employing the fact that, given linear spaces X and Y , equipped

with inner products (·, ·)X and (·, ·)Y , there is a unique inner product (·, ·) in X ⊗ Y such

that, ∀α1, α2 ∈ X, ∀β1, β2 ∈ Y

((α1 ⊗ β1), (α2 ⊗ β2)) = (α1, α2)X(β1, β2)Y .

See for this [1], Chapter 1.3.

Now we are able to define the Sobolev spaces W s,p(X):
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Definition 2. Let X be a Riemannian manifold, equipped with the measure µ induced

by the Riemannian structure. For each j ∈ N, we equip each space T ∗(X)⊗j with the

Hermitian structures previously described and consider the differential operators ∇j from

C∞(X) to ΓC∞(X,T ∗(X)⊗j). Let p ∈ [1,∞) and s ∈ N. We set

W s,p(X) := {f ∈ Lpµ(X) : ∀j ∈ {1, . . . , s} ∇jf ∈ ΓLpµ(X,T ∗(X)⊗j)}.

W s,p is a Banach space with the norm

(14) ‖f‖W s,p(X) := (‖f‖p
Lpµ(X)

+
s∑
j=1

‖∇jf‖p
Γ
L
p
µ

(X,T ∗(X)⊗j))
1/p.

From Theorem 1, we easily deduce the following generalisation of Meyers-Serrin theorem:

Theorem 2. Let W s,p(X) be the spaces described in Definition 2. Then C∞(X)∩W s,p(X)

is dense in W s,p(X).

Proof. Let (U,Φ) be a local chart. If x ∈ U , j ∈ N and F = T ∗(X)⊗j, we can take

LF (x)(
m∑

i1,...,ij=1

αi1,...,ij(x)dxi1 ⊗ . . . dxij) = (αi1,...,ij(x))1≤i1,...,ij≤m.

It follows that, if y ∈ Φ(U), employing the usual notation (2)-(3), we have

∇j
Φ(φ)(y) = (

∂jfφ
∂xi1 ...dxij

(Φ−1(y)) + Pi1,...,ij(fφ)(Φ−1(y)))1≤i1,...,ij≤m

= ( ∂jφ
∂ri1 ...drij

(y) +Qi1,...,ij(φ)(y)))1≤i1,...,ij≤m,

with each operator Qi1,...,ij of degree less than j. We deduce from Lemma 1 that, if

fφ ∈ W j−1,p
loc (X), φ ∈ W j,p

loc (Φ(U);Cmj). We conclude that each space W s,p(X) is contained

in W s,p
loc (X). So we can apply Theorem 1. �

Remark 2. The conclusions of Theorem 2 continue to hold if we replace, in the previ-

ous construction of Sobolev spaces W s,p(X), the Levi-Civita connection with any other

smooth connection: of course, we obtain a different Sobolev space, for which we have a

corresponding Meyers-Serrin type theorem.
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