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ABSTRACT. The quaternionic Hardy space of slice regular functions H2(B) is a reproducing

kernel Hilbert space. In this note we see how this property can be exploited to construct a

Riemannian metric on the quaternionic unit ball B and we study the geometry arising from

this construction. We also show that, in contrast with the example of the Poincaré metric on

the complex unit disc, no Riemannian metric on B is invariant with respect to all slice regular

bijective self maps of B.

SUNTO. Lo spazio di Hardy di funzioni slice regolari sui quaternioni H2(B) è uno spazio di

Hilbert con nucleo riproducente. In questa nota vediamo come questa proprietà possa essere

utilizzata per costruire una metrica Riemanniana sulla palla unitaria quaternionica B e studiamo

la geometria derivante da questa costruzione. Mostriamo inoltre che, in contrasto con l’esempio

della metrica di Poincaré sul disco unitario complesso, non esiste una metrica Riemanniana su B

che sia invariante rispetto a tutte le trasformazioni slice regolari biettive della palla in sé.
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1. INTRODUCTION

The study of function spaces on given domains often reveals geometric aspects of the domains

themselves. In fact there is a rich interplay between reproducing kernel Hilbert spaces and dis-

tance functions. See [1] for an overview and several examples from one-variable holomorphic

function space theory. In this note we introduce the Hardy space of slice regular functions over

the quaternions and we study its relation with the geometry of the quaternionic unit ball B. Slice

regularity is, among other possible definitions, a notion of hyper-holomorphy for quaternionic
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functions. It was introduced in 2006 by Gentili and Struppa (see [11, 12]) and it is nowadays a

well established theory, in continuous development. When compared to the well known exam-

ple of quaternionic Fueter regular functions [8, 9], it has the advantage of including the identity

map, the natural polynomials and converging power series of the form
∑

n≥0 q
nan, where q is a

quaternionic variable and the coefficients an are quaternions as well. The Hardy space of slice

regular functions on B is in fact defined by

H2(B) :=
{∑
n≥0

qnan :
∥∥∥∑
n≥0

qnan

∥∥∥
H2(B)

:=

√∑
n≥0

|an|2 < +∞
}
.

It is possible to show thatH2(B) is a quaternionic reproducing kernel Hilbert space, with respect

to the inner product 〈∑
n≥0

qnan,
∑
n≥0

qnbn

〉
H2(B)

:=
∑
n≥0

bnan

and the reproducing kernel is

k(q, w) = kw(q) =
∑
n≥0

qnw̄n, for q, w ∈ B.

For the definition and all basic results concerning quaternionic Hilbert spaces see, e.g., [13] and

references therein. For the properties we are interested in, the same results hold in quaternion

valued Hilbert spaces and complex valued Hilbert spaces, and the proofs are very similar.

By measuring distances between the projections of kernel functions on the unit sphere of

H2(B) it is possible to define a metric on B:

δB(p, q) :=

√√√√1−

∣∣∣∣∣
〈

kq
‖kq‖H2(B)

,
kp

‖kp‖H2(B)

〉
H2(B)

∣∣∣∣∣
2

.

The same construction in the complex case gives the pseudo-hyperbolic metric in the complex

unit disc. Here we are interested in the infinitesimal version of δB, that is in the Riemmannian

length metric associated with δB, and we obtain the following result.

Theorem. For any w ∈ B, let us identify the tangent space TwB with H. For any vector

d ∈ TwB, if w = u + yIw lies in LIw := R + RIw and we decompose d = d1 + d2 with d1 in

LIw and d2 in L⊥Iw , then the length of d with respect to gB is given by

(1) |d|2gB(w) =
1

(1− |w|2)2
|d1|2 +

1

|1− w2|2
|d2|2.
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To understand the geometry arising from this construction, in Section 5 we study isometries

of (B, gB), and we sketch the proof of a characterization theorem.

Theorem. The group of isometries of (B, g) is generated by

(a) regular Möbius transformation of the form

q 7→Mλ(q) = (1− qλ)−∗ ∗ (q − λ) =
q − λ
1− qλ

,

with λ in (−1, 1);

(b) isometries of the sphere of imaginary units, which in polar coordinates r ≥ 0, t ∈

[0, π], I ∈ S read as

q = retI 7→ TA(q) = retA(I),

where A : S→ S is an isometry of S;

(c) the reflection in the imaginary hyperplane,

q 7→ R(q) = −q.

In the previous statement the symbol ∗ denotes an appropriate multiplication operation between

slice regular functions (see Section 2).

We conclude this note with a discussion on the problem of finding a Poincaré-type metric on B,

namely a Riemannian metric preserved by all slice regular self map of the unit ball.

The results presented in this note are obtained in collaboration with Nicola Arcozzi and we refer

to [2] for the details of the proofs.

2. SOME BACKGROUND ON SLICE REGULAR FUNCTIONS

Let H = R + Ri + Rj + Rk denote the non-commutative four dimensional real algebra

of quaternions, where i, j, k are imaginary units i2 = j2 = k2 = −1 subject to the rules

ij = k = −ji. If S = {q ∈ H : q2 = −1} denotes the two dimensional sphere of imaginary

units of H, then we can slice the space of quaternions in copies of the complex plane intersecting

along the real axis

H =
⋃
I∈S

(R + RI), R =
⋂
I∈S

(R + RI),

where LI := R + RI ∼= C for any I ∈ S. Each quaternion can be expressed as q = x + yIq

where x, y ∈ R and Iq ∈ S. To have uniqueness outside the real axis we chose y ≥ 0. The real
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part of q is Re(q) = x ∈ R, the imaginary part is Im(q) = yIq ∈ I = Ri + Rj + Rk. The

conjugate of q is q̄ = x− yIq and its modulus is given by |q|2 = qq̄.

We recall the definition of slice regularity, together with some basic property of this class of

functions. In the sequel, for the sake of simplicity, we will consider functions defined on the

open unit ball B := {q ∈ H : |q| < 1}. We refer to the monograph [10] for the more general

case of symmetric slice domains and for a detailed account of the theory.

Definition 2.1. A function f : B→ H is said to be slice regular if for any I ∈ S the restriction

fI of f to BI := B ∩ LI has continuous partial derivatives and it is such that

∂IfI(x+ yI) =
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ yI) = 0

for all x+ yI ∈ BI .

A wide class of examples is given by power series with quaternionic coefficients of the form∑
n≥0 q

nan which converge in open balls centered at the origin. Moreover, the following char-

acterization result holds.

Theorem 2.2. A function f is slice regular on B if and only if f has a power series expansion

f(q) =
∑

n≥0 q
nan converging absolutely and uniformly on compact sets of B.

For slice regular functions, it is possible to define an appropriate notion of derivative: the slice

(or Cullen) derivative of a slice regular function f on B, is the slice regular function defined by

∂cf(x+ yI) =
1

2

(
∂

∂x
− I ∂

∂y

)
fI(x+ yI).

Slice regular functions defined on B have a peculiar property.

Theorem 2.3 (Representation Formula). Let f be a slice regular function on B and let x+yS ⊂

B. Then, for any I, J ∈ S,

f(x+ yJ) =
1

2
[f(x+ yI) + f(x− yI)] + J

I

2
[f(x− yI)− f(x+ yI)].

In particular, there exist b, c ∈ H such that f(x+ yJ) = b+ Jc for any J ∈ S.

In general, the pointwise product of functions does not preserve slice regularity. Hence we

introduce a new multiplication operation, which, in the special case of power series, can be

defined as follows.
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Definition 2.4. Let f(q) =
∑

n≥0 q
nan, and g(q) =

∑
n≥0 q

nbn be slice regular functions on B.

Their regular product (or ∗-product) is

f ∗ g(q) =
∑
n≥0

qn
n∑
k=0

akbn−k,

slice regular on B as well.

The ∗-product is related to the standard pointwise product by the following formula.

Proposition 2.5. Let f, g be slice regular functions onB. Then

f ∗ g(q) =

 0 if f(q) = 0

f(q)g(f(q)−1qf(q)) if f(q) 6= 0

The reciprocal f−∗ of a slice regular function f with respect to the ∗-product can be defined.

Definition 2.6. Let f(q) =
∑

n≥0 q
nan be a slice regular function on B, f 6≡ 0. Its regular

reciprocal is

f−∗(q) =
1

f ∗ f c(q)
f c(q),

where f c(q) =
∑∞

n=0 q
nan. The function f−∗ is slice regular on B \ {q ∈ B | f ∗ f c(q) = 0}

and f ∗ f−∗ = 1 there.

Then we have a natural definition of regular quotients of slice regular functions, examples of

which, that will appear in the sequel, are the regular Möbius transformations, of the form

Ma(q) = (1− qa)−∗ ∗ (q − a),

where a ∈ B. These, are slice regular bijective self-maps of the quaternionic unit ball B and,

after multiplication on the right by unit-norm quaternions, they are the only self-maps of B

which are slice regular and bijective. They were introduced by Stoppato in [16].

3. THE QUATERNIONIC HARDY SPACE H2(B)

As anticipated in the Introduction, a slice regular function f(q) =
∑

n≥0 q
nan belongs to the

quaternionic Hardy space H2(B) if and only if

‖f‖H2(B) :=

√∑
n≥0

|an|2 < +∞.
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We recall that the H2-norm can also be computed in an integral form as

‖f‖2H2(B) =

∫ 2π

0

|f(eIt)|2dt

where I ∈ S is any imaginary unit and, with a slight abuse of notation, f denotes here the a.e.

radial limit of the function f , see [6]. By polarizing the H2-norm, we can endow H2(B) with a

quaternionic Hermitian product, that can be computed as〈∑
n≥0

qnan,
∑
n≥0

qnbn

〉
H2(B)

:=
∑
n≥0

bnan

for any
∑

n≥0 q
nan,

∑
n≥0 q

nbn in H2(B), thus equipping H2(B) with the structure of quater-

nionic Hilbert space.

The key property of H2(B) that allows us to construct an invariant metric on the unit ball B

is that it is endowed with a reproducing kernel: for any w in B and any f in H2(B) we have

f(w) = 〈f, kw〉H2(B) , where kw(q) = k(w, q) =
∑
n≥0

qnwn.

The first metric on B that we consider, denoted by δB, measures the distance between projections

of kernel functions in the unit sphere of the Hilbert space H2(B):

(2) δB(p, q) :=

√√√√1−

∣∣∣∣∣
〈

kq
‖kq‖H2(B)

,
kp

‖kp‖H2(B)

〉
H2(B)

∣∣∣∣∣
2

.

In the case of the complex Hardy space on the unit disc H2(D), this procedure leads to the

pseudo-hyperbolic metric

δD(z, w) =

∣∣∣∣ z − w1− wz

∣∣∣∣ .
In our quaternionic setting we obtain a formally similar result. In fact, by direct computation it

is possible to show that

Proposition 3.1. Let δB be defined as in (2). For any w, z ∈ B, δB(z, w) coincides both with the

value at z of the regular Möbius transformation Mw associated with w, and with the vaule at w

of the regular Möbius transformation Mz associated with z, namely

δB(w, z) =
∣∣(1− qz)−∗ ∗ (q − z)

∣∣
|q=w

=
∣∣(1− qw)−∗ ∗ (q − w)

∣∣
|q=z

.
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4. AN INVARIANT METRIC ASSOCIATED WITH H2(B)

The infinitesimal version of the pseudo-hyperbolic metric δD in the complex disc, is the hy-

perbolic metric in the Riemann-Beltrami-Poincaré disc model:

ds2 =
|dz|2

(1− |z|2)2
.

By infinitesimal version of a distance δ, we mean the length metric associated with δ (see e.g.

[14]). The infinitesimal metric associated with δB is a Riemannian metric gB on B.

Theorem 4.1. Let gB denote the length metric associated with δB. For any w ∈ B, let us identify

the tangent space TwB with H. For any vector d ∈ TwB, if w lies in LIw and we decompose

d = d1 + d2 with d1 in LIw and d2 in L⊥Iw , then the length of d with respect to gB is given by

(3) |d|2gB(w) =
1

(1− |w|2)2
|d1|2 +

1

|1− w2|2
|d2|2.

In the metric (3), the first summand is the hyperbolic metric on a slice, while the second

“smaller” summand is specifically quaternionic: it measures the variation of a quaternionic

Hardy function in the direction orthogonal to the slices. Its small size reflects in geometric

terms the property of slice regular functions of being affine in the S variable, see Theorem 2.3.

The proof of this theorem follows from the application of a more general result concerning a

large class of quaternionic reproducing kernel Hilbert spaces, to the case of H2(B).

The fact that gB(w) measures vectors in LIw by multiplying their Euclidean length by 1
1−|w|2

means that the restriction of gB to a slice LI is the classical Poincaré metric in the unit disc BI .

Using spherical coordinates, B = {retI | r ∈ [0, 1), t ∈ [0, π], I ∈ S}, if q = retI and we

decompose the lenght element dq = dq1 + dq2 ∈ LIw + L⊥Iw , then, since dI is orthogonal to I

(because I is unitary) we have |d1|2 = dr2 + r2dt2 and |d2|2 = r2 sin2 t|dI|2 where |dI| denotes

the usual two-dimensional sphere round metric on S ∼= S2. Therefore we get the expression of

the metric tensor ds2gB associated with gB in spherical coordinates:

(4) ds2gB =
dr2 + r2dt2

(1− r2)2
+

r2 sin2 t|dI|2

(1− r2)2 + 4r2 sin2 t
.

That is, gB is a warped product of the hyperbolic metric ghyp on the complex unit disc with the

standard round metric gS on the two-dimensional sphere [15].
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5. ISOMETRIES AND GEODESICS OF (B, gB)

To uderstand the geometry of (B, gB) we study its group of isometries.

Theorem 5.1. The group of isometries of (B, gB) is generated by maps of type

(a) regular Möbius transformation of the form

q 7→Mλ(q) = (1− qλ)−∗ ∗ (q − λ) =
q − λ
1− qλ

,

with λ in (−1, 1);

(b) isometries of the sphere of imaginary units, which in polar coordinates r ≥ 0, t ∈

[0, π], I ∈ S read as

q = retI 7→ TA(q) = retA(I),

where A : S→ S is an isometry of S;

(c) the reflection in the imaginary hyperplane,

q 7→ R(q) = −q.

From the expression (3) of gB, it is not difficult to see that the three families of functions (a),

(b) and (c) act isometrically on (B, gB).

To show that (a), (b) and (c) actually generate the group of isometries of (B, gB), the main

ingredients of the proof are the following:

1. Identify two families of 2-dimensional totally geodesic submanifolds.

The first family is associated with isometries of type (a) and it consists of all slices

BI = B ∩ LI , which are hyperbolic discs for any I ∈ S. To prove that they are totally

gedosic we use the fact that the restriction of gB to BI is the classical hyperbolic metric

and the second component in gB is orthogonal to BI .

The second family is associated with isometries of type (b) and (c) and it consists of the

discs

D(π/2, C(J)) = {reIπ/2 ∈ B : I ∈ S, orthogonal to J},

obtained intersecting two totally geodesic 3-dimensional submanifolds: the imaginary

hyperplane B(π/2) := {reIπ/2 ∈ B : I ∈ S} (associated with the map R) and
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B(C(J)) := {reIt ∈ B : I ∈ S, orthogonal to J} (associated with maps of type (b):

C(J) is the great circle of S orthogonal to J).

Notice that the two families are “orthogonal” to each other in the following sense:

D (π/2, C(J)) ∩ BJ = {0} and T0D (π/2, C(J)) = T0B⊥J .

Moreover, applying Möbius maps of the form Mλ to D (π/2, C(J)), we can extend the

orthogonality relation from the origin to all points in B ∩ R. In this way we obtain a

family of totally geodesic submanifolds

D (t, C(J)) = Mλ(t) (D (π/2, C(J)))

that, for t ∈ [0, π] and J ∈ S/{±1}, defines a foliation of the manifold B.

2. Prove that each isometry preserves the real axis.

To do this second step we investigate some metric properties of the discs D
(
π
2
, C(J)

)
.

Since the imaginary units taken into account belong to C(J) ∼= S1, we can change

coordinates, setting I = eiθ and |dI| = dθ, so that the metric g, onD
(
π
2
, C(J)

)
, reduces

to ds2D = dr2

(1−r2)2 + r2dθ2

(1+r2)2
. It is actually convenient to parametrize D

(
π
2
, C(J)

)
⊂ I ∼=

R3 as a surface of revolution of the form (Φ(ρ),Ψ(ρ) cos θ,Ψ(ρ) sin θ), with

ρ = ρ(r) =
1

2
log

1 + r

1− r

the arc length of the generating curve. In the new coordinates (ρ, θ), the metric tensor is

ds2D = dρ2 +
1

4
tanh2(2ρ)dθ2 = dρ2 + Ψ2(ρ)dθ2.

It is possible to study geodesics of D
(
π
2
, C(J)

)
by means of Euler-Lagrange equations

and thus to prove

Lemma 5.2. Let J ∈ S. For any q ∈ D
(
π
2
, C(J)

)
such that q 6= 0, the injectivity radius

at q is finite. On the other hand, the injectivity radius at q = 0 is infinite.

This important metric property allows us to conclude that all isometries map the real

diameter of B to itself.
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Notice that the Gaussian curvature K of the two-dimensional submanifold D
(
π
2
, C(J)

)
is positive. In fact, see e.g. [7], with respect to coordinates (ρ, θ) it can be computed as

K =
−Ψ′′(ρ)

Ψ(ρ)

which is a non-negative quantity since Ψ(ρ) = 1
2

tanh(2ρ) ≥ 0 and Ψ′′(ρ) ≤ 0. This

in particular implies that the sectional curvature of (B, g) is positive on all sections

D
(
π
2
, C(J)

)
, while it is negative on all slices BI .

3. Prove that each isometry preserves the imaginary hyperplane.

Let Φ be an isometry of (B, g). Up to composition with a regular Möbius transformation

of type (a) and with the mapR : q 7→ −q, we can suppose that Φ(0) = 0 and that, by the

preceding step, Φ(B ∩ R+) = B ∩ R+. Since Φ is an isometry, Φ(B(π/2)) is a totally

geodesic submanifold of B. Moreover, since Φ(0) = 0, since the geodesics starting

at 0 lie on slices, and since, by the first step, the slices carry the usual hyperbolic-

Poincaré metric, we are able to show that Φ maps radii γI(r) = re
π
2
I to radii of the

form Φ(γI(r)) = reθ(I)ψ(I) with θ(I) ∈ [0, π], and ψ(I) ∈ S. Next, we show that θ

must be constant on S and that this constant must equal π/2, thus we conclude that Φ

preserves the imaginary hyperplane B(π/2).

4. Conclusion.

To conclude we prove that given an isometry Φ that preserves both the real axis and the

imaginary hyperplane, its restriction to B(π/2) coincide with an isometry TA of type

(b). This allows us to show that T−1A ◦ Φ is the identity map, thus completing the proof.

As an application, which also shows the relationship between the metric gB and the Hardy

space H2(B), we see that the restriction of the metric gB to a three-dimensional sphere r∂B of

radius r, induces the volume form

dV olr∂B(retI) =
r3 sin2 t

(1− r2)((1− r2)2 + 4r2 sin2(t))
dtdAS(I)
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where dAS denotes the area element of the two-dimensional sphere S. After a normalization

dV olr∂B induces a volume form on the boundary ∂B of the unit ball: if u = esJ ∈ ∂B, we have

dV ol∂B(u) := lim
r→1−

(1− r2)dV olr∂B(ru) = lim
r→1−

(1− r2)r3 sin2 s

(1− r2)((1− r2)2 + 4r2 sin2(s))
dtdAS(I)

=
1

4
dtdAS(I).

Notice that dV ol∂B is the product of the usual spherical metric on the two-dimensional sphere S

with the metric dt on circles ∂BI which appears in the definition of Hardy spaces given in [6].

Moreover denoting (with a slight abuse of notation) the radial limit by f itself, we have

Proposition 5.3. If f ∈ H2(B), then

1

V ol∂B(∂B)

∫
∂B
|f(u)|2dV ol∂B(u) = ||f ||2H2(B).

6. POINCARÉ TYPE METRICS ON B

Bisi and Gentili proved in [3] that the usual Poincaré metric on B is invariant under classical

(non-regular) Möbius maps. On the contrary, as shown by Bisi and Stoppato in [4], the same

metric is not preserved by regular Möbius maps associated with a non-real point. In the subse-

quent paper [5] the same authors obtain the proof of an analogue of the Schwarz-Pick Lemma,

that, in some sense, motivates the search of a Riemannian metric which is preserved by every

slice regular bijective self map of B. In fact one of the statements of their result read as follows.

Theorem 6.1 (Bisi, Stoppato, [5]). Let f : B → B be a slice regular function and let q0 ∈ B.

Then ∣∣∣∣(f(q)− f(q0)) ∗
(

1− f(q0) ∗ f(q)
)−∗∣∣∣∣ ≤ ∣∣(q − q0) ∗ (1− q̄0 ∗ q)−∗

∣∣ .
Moreover the equality holds for some q 6= q0 if and only if f is a regular Möbius map.

Even if the previous result suggests that regular Möbius play an important role in the study

of the intrinsic geometry of the unit ball, there is no Riemannian metric on B which is invari-

ant under any regular Möbius function, unless the Möbius function is already an isometry for

the metric defined in Theorem 4.1. If a geometric invariant for slice regular functions on the

quaternionic ball exists, it has to be other than a Riemannian metric.
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Theorem 6.2. Let a be a point of B \ R. There is no Riemannian metric m on B having as

isometry the regular Möbius map ϕ : q 7→ (1− qa)−∗ ∗ (a− q).

The proof consists in showing that the real differential of ϕ ◦ ϕ at the origin maps the unit

disc in T0B ∩ L⊥Ia into a proper subset of itself. Hence ϕ cannot be isometric.
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