
A NOTE ON VISCOUS CAPILLARY FLUIDS IN FAST ROTATION

FLUIDI VISCOSI E CAPILLARI IN ROTAZIONE RAPIDA

FRANCESCO FANELLI

Abstract. The present note is devoted to the study of singular perturbation problems

for a Navier-Stokes-Korteweg system with Coriolis force. Such a model describes the

motion of viscous compressible capillary fluids under the action of the Earth rotation.

We are interested in the asymptotic behavior of a family of weak solutions in the limit

for the Mach, the Rossby and the Weber numbers going to 0.

Sunto. La presente nota è dedicata allo studio di problemi di perturbazione singolare

per un sistema di Navier-Stokes-Korteweg con forza di Coriolis. Tale modello describe il

moto di fluidi compressibili, viscosi e capillari sotto l’azione della rotazione della Terra.

Ci si interessa qui al comportamento asintotico di una famiglia di soluzioni deboli nel

limite a basso numero di Mach, Rossby e Weber.
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1. Introduction

In this note we review some results about singular perturbation problems for the fol-

lowing Navier-Stokes-Korteweg system with Coriolis force:

(1)


∂tρ+ div (ρu) = 0

∂t(ρu) + div
(
ρu⊗ u

)
+

1

ε2
∇P (ρ) +

1

ε
C(ρ, u)− νdiv

(
ρDu

)
− 1

ε2(1−α)
ρ∇∆ρ = 0.

These equations can be used to describe the motion of viscous capillary fluids under the

action of the rotation of the Earth. The scalar quantity ρ ≥ 0 represents the density
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of the fluid, while u ∈ R3 its velocity field. The smooth function P , just depending

on the density, represents the pressure law of the medium, while the term ρ∇∆ρ takes

into account the internal tension. Finally, C(ρ, u) is the Coriolis operator, which we take

here equal to e3 × ρu, where e3 = (0, 0, 1) denotes the unit vector directed along the

x3-coordinate.

The scaling appearing in (1) corresponds to take the Mach and the Rossby numbers

proportional to a small parameter ε ∈ ]0, 1], and the Weber number of order ε2(1−α), for

some α ∈ [0, 1] (which means that the capillarity coefficient is supposed to equal ε2α).

For any fixed value of ε > 0, existence of global in time “weak solutions” to system

(1) can be established as in work [3] by Bresch, Desjardins and Lin. Actually, the weak

formulation adopted in that paper is a bit modified (see Definition 2.1 below) with respect

to the usual one, due to a degeneracy of the model in vacuum. Roughly speaking, the

idea is to localize the test-functions on regions where ρ > 0: this is achieved by (formally)

evaluating the momentum equations on functions of the form ρψ, for smooth ψ. We

remark that this is possible thanks to the additional smoothness of the density function,

which is provided by the capillarity term. Such a property shows up not just in the

classical energy inequality, but also through the so-called BD entropy conservation, a

second energy inequality first discovered in [2] by Bresch and Desjardins (see also [3]) for

our system, and then generalized by the same authors to different models for compressible

fluids with density-dependent viscosity coefficients. At this point, let us remark that, in

presence of further terms in the momentum equations (e.g. some drag forces like in [1],

or a “cold pressure” term), it is possible to resort to the classical weak formulation of the

system. We refer to [4] and the references therein for further details about this issue.

In the sequel, we will assume the same weak formulation as in [3]: then, we are interested

in studying the asymptotic behavior of weak solutions for ε → 0, and in characterizing

the limit equation. In particular, this means that we are performing the incompressible

and high rotation limits simultaneously; on the other hand, the assumed scaling allows us

to consider either a low capillarity limit (for 0 < α ≤ 1), or a constant capillarity regime

(when choosing α = 0).
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In works [1] and [11], an analogous investigations is performed for similar systems.

There, the authors just focus on the vanishing capillarity case; also, the study is carried

out in 2-D domains and for well-prepared initial data. Here, on the contrary, we restrict

our attention to the case α = 0, in order to look at strong surface tension effects in the

limit; the case α = 1 can be treated in a very similar way, while the intermediate values

α ∈ ]0, 1[ are technically more involved, because this choice introduces an anisotropy of

scaling in the model (see paper [6]). Also, we consider the three-dimensional domain Ω :=

R2× ]0, 1[ , for which we assume complete slip boundary conditions (to avoid boundary

layers phenomena). For general ill-prepared initial data, we prove the convergence of

system (1) to a 2-D modified Quasi-Geostrophic equation for the limit density, which can

be seen as a sort of stream-function for the limit velocity field.

The result, formulated in Section 2, strongly relies on microlocal symmetrization and

spectral analysis of the singular perturbation operator, and on the study of the propaga-

tion of acoustic-Rossby waves. In the sequel (see Sections 3 and 4), we will limit ourselves

to give just a sketch of the proof. We postpone to Section 5 some comments about the

case of variable rotation axis.

The analysis presented in this note is contained in works [6], [7]. We refer to them for

complete proofs and further results in this direction.

2. Hypotheses and main results

Defining Ω to be the infinite slab R2× ]0, 1[ , we consider in R+ × Ω the scaled Navier-

Stokes-Korteweg system with Coriolis force

(2)


∂tρ+ div (ρu) = 0

∂t(ρu) + div
(
ρu⊗ u

)
+

1

ε2
∇P (ρ) +

e3 × ρu
ε

− νdiv
(
ρDu

)
− 1

ε2(1−α)
ρ∇∆ρ = 0 ,

where ν > 0 denotes the viscosity of the fluid, Du :=
(
∇u + t∇u

)
/2 is the viscous stress

tensor, e3 = (0, 0, 1) is the unit vector directed along the x3-coordinate, and 0 ≤ α ≤ 1 is

a fixed parameter.

We supplement system (2) by complete slip boundary conditions. Namely, if we denote

by n the unitary outward normal to the boundary ∂Ω of the domain Ω (simply, ∂Ω =
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{x3 = 0} ∪ {x3 = 1}), we impose

(3) (u · n)|∂Ω = u3
|∂Ω = 0 , (∇ρ · n)|∂Ω = ∂3ρ|∂Ω = 0 ,

(
(Du)n× n

)
|∂Ω

= 0 .

In the previous system (2), the scalar function ρ ≥ 0 represents the density of the fluid,

u ∈ R3 its velocity field, and P (ρ) its pressure, given by the γ-law

(4) P (ρ) :=
1

γ
ργ , for some 1 < γ ≤ 2 .

Remark 2.1. Note that equations (2), supplemented by boundary conditions (3), can be

recast as a periodic problem with respect to x3, in the new domain

Ω = R2 × T1 , with T1 := [−1, 1]/ ∼ ,

where ∼ denotes the equivalence relation which identifies −1 and 1. Indeed, it is enough

to extend ρ and uh as even functions with respect to x3, and u3 as an odd function.

In what follows, we will always assume that such modifications have been performed on

the initial data, and that the respective solutions keep the same symmetry properties.

We now define the notion of weak solution for our system: it is based on the one given

in [3]. The requirements on the initial data and on integrability properties of respective

solutions will be justified by energy estimates (see Section 3 below).

First of all, let us introduce the internal energy function h = h(ρ), such that

h′′(ρ) =
P ′(ρ)

ρ
= ργ−2 and h(1) = h′(1) = 0 ,

and let us define the energies

Eε[ρ, u](t) :=

∫
Ω

(
1

ε2
h(ρ) +

1

2
ρ |u|2 +

1

2 ε2
|∇ρ|2

)
dx(5)

Fε[ρ](t) :=
ν2

2

∫
Ω

ρ |∇ log ρ|2 dx = 2 ν2

∫
Ω

|∇√ρ|2 dx .(6)

We will denote by Eε[ρ0, u0] ≡ Eε[ρ, u](0) and by Fε[ρ0] ≡ Fε[ρ](0) the same quantities,

when computed on the initial data
(
ρ0, u0

)
.

Definition 2.1. Fix (ρ0, u0) such that ρ0 − 1 ∈ H1(Ω), ∇√ρ0 ∈ L2(Ω) and
√
ρ0 u0 ∈

L2(Ω), with ρ0 ≥ 0 almost everywhere.
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The couple
(
ρ, u
)

is a weak solution to system (2)-(3) in [0, T [×Ω (for some T > 0)

with initial data (ρ0, u0) if the following conditions are fulfilled:

(i) ρ ≥ 0 almost everywhere, and we have ρ−1 ∈ L∞
(
[0, T [ ;Lγ(Ω)

)
, ∇ρ and ∇√ρ ∈

L∞
(
[0, T [ ;L2(Ω)

)
and ∇2ρ ∈ L2

(
[0, T [ ;L2(Ω)

)
;

(ii)
√
ρ u ∈ L∞

(
[0, T [ ;L2(Ω)

)
and
√
ρDu ∈ L2

(
[0, T [ ;L2(Ω)

)
;

(iii) the mass equation is satisfied in the weak sense: for any φ ∈ D
(
[0, T [×Ω

)
one has

−
∫ T

0

∫
Ω

(
ρ ∂tφ + ρ u · ∇φ

)
dx dt =

∫
Ω

ρ0 φ(0) dx ;

(iv) the momentum equation is verified in the following sense: for ψ ∈ D
(
[0, T [×Ω

)
,∫

Ω

ρ2
0u0 · ψ(0) dx =

∫ T

0

∫
Ω

(
−ρ2u · ∂tψ − ρu⊗ ρu : ∇ψ + ρ2 (u · ψ) div u −(7)

− γ

ε2(γ + 1)
P (ρ)ρ divψ +

1

ε
e3 × ρ2u · ψ + νρDu : ρ∇ψ +

+ νρDu : (ψ ⊗∇ρ) +
1

ε2(1−α)
ρ2∆ρ divψ +

2

ε2(1−α)
ρ∆ρ∇ρ · ψ

)
dx dt ;

(v) for almost every t ∈ ]0, T [ , the following energy inequalities hold true:

Eε[ρ, u](t) + ν

∫ t

0

∫
Ω

ρ |Du|2 dx dτ ≤ Eε[ρ0, u0]

Fε[ρ](t) +
ν

ε2

∫ t

0

∫
Ω

P ′(ρ) |∇√ρ|2 dx dτ +
ν

ε2(1−α)

∫ t

0

∫
Ω

∣∣∇2ρ
∣∣2 dx dτ ≤ C (1 + T ) ,

where the constant C depends just on
(
Eε[ρ0, u0], Fε[ρ0], ν

)
.

Here we consider the general case of ill-prepared initial data
(
ρ, u
)
|t=0

=
(
ρ0,ε, u0,ε

)
.

Namely, we suppose the following on the family
(
ρ0,ε , u0,ε

)
ε>0

:

(i) ρ0,ε = 1 + ε r0,ε, with
(
r0,ε

)
ε
⊂ H1(Ω) ∩ L∞(Ω) bounded;

(ii)
(
u0,ε

)
ε
⊂ L2(Ω) bounded.

Remark 2.2. Notice that, under our hypotheses, the energies of the initial data are

uniformly bounded with respect to ε:

Eε[ρ0,ε, u0,ε] + Fε[ρ0,ε] ≤ K0 ,

for some constant K0 > 0 independent of ε.
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Up to extraction of a subsequence, we can assume that

(8) r0,ε ⇀ r0 in H1(Ω) and u0,ε ⇀ u0 in L2(Ω) ,

where we denoted by ⇀ the weak convergence in the respective spaces.

For these data, we are interested in studying the asymptotic behaviour of the corre-

sponding solutions
(
ρε , uε

)
ε

to system (2) for the parameter ε→ 0. As we will see, one of

the main features is that the limit-flow will be two-dimensional and horizontal along the

plane orthogonal to the rotation axis. Then, let us introduce some notations to describe

better this phenomenon. We will always decompose x ∈ Ω into x = (xh, x3), with xh ∈ R2

denoting its horizontal component. Analogously, for a vector-field v = (v1, v2, v3) ∈ R3 we

set vh = (v1, v2), and we define the differential operators ∇h and divh as the usual opera-

tors, but acting just with respect to xh. Finally, we define the operator ∇⊥h :=
(
−∂2 , ∂1

)
.

We restrict our attention to the case α = 0, i.e. when the capillarity coefficient is taken

to be constant. As a matter of fact, we want to put in evidence here the effects of surface

tension in the limit.

Theorem 2.1. Let α = 0 in (2) and 1 < γ ≤ 2 in (4). Let
(
ρε , uε

)
ε

be a family of weak

solutions (in the sense of Definition 2.1) to system (2)-(3) in [0, T ]×Ω, related to initial

data
(
ρ0,ε, u0,ε

)
ε

satisfying the hypotheses (i)− (ii) and (8). Define rε := ε−1 (ρε − 1).

Then, up to the extraction of a subsequence, one has the convergence properties

(a) rε ⇀ r in L∞
(
[0, T ];H1(Ω)

)
∩ L2

(
[0, T ];H2(Ω)

)
;

(b)
√
ρε uε ⇀ u in L∞

(
[0, T ];L2(Ω)

)
and
√
ρεDuε ⇀ Du in L2

(
[0, T ];L2(Ω)

)
;

(c) rε → r and ρ
3/2
ε uε → u (strong convergence) in L2

(
[0, T ];L2

loc(Ω)
)
,

where r = r(xh) and u =
(
uh(xh), 0

)
are linked by the relation uh = ∇⊥h (Id −∆h) r.

Moreover, r solves (in the weak sense) the modified Quasi-Geostrophic equation

(9) ∂t

((
Id −∆h + ∆2

h

)
r
)

+ ∇⊥h
(
Id −∆h

)
r · ∇h∆

2
hr +

ν

2
∆2
h

(
Id −∆h

)
r = 0

supplemented with the initial condition r|t=0 = r̃0, where r̃0 ∈ H3(R2) is the unique

solution of (
Id −∆h + ∆2

h

)
r̃0 =

∫ 1

0

(
ω3

0 + r0

)
dx3 ,

with r0 and u0 defined in (8) and ω0 = ∇× u0 the vorticity of u0.
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3. Uniform bounds

The present section is devoted to show uniform bounds for the family
(
ρε, uε

)
ε
.

3.1. Energy and BD entropy estimates. First of all, we establish energy and BD

entropy estimates. The first inequality, concerning the classical energy Eε, is obtained in

a standard way, testing the momentum equation on u and integrating by parts.

Proposition 3.1. Let (ρ, u) be a smooth solution to system (2) in [0, T [×Ω, with initial

datum
(
ρ0, u0

)
, for some positive time T > 0. Then, for all ε > 0 and all t ∈ [0, T [ ,

d

dt
Eε[ρ, u] + ν

∫
Ω

ρ |Du|2 dx = 0 .

Let us now consider the function Fε: we have the following estimate.

Lemma 3.1. Let (ρ, u) be a smooth solution to system (2) in [0, T [×Ω, with initial datum(
ρ0, u0

)
, for some positive time T > 0.

Then there exists a “universal” constant C > 0 such that, for all t ∈ [0, T [ , one has

1

2

∫
Ω

ρ(t) |u(t) + ν∇ log ρ(t)|2 dx +(10)

+
ν

ε2

∫ t

0

∫
Ω

∣∣∇2ρ
∣∣2 dx dτ +

4ν

ε2

∫ t

0

∫
Ω

P ′(ρ) |∇√ρ|2 dx dτ ≤

≤ C
(
Fε[ρ0] + Eε[ρ0, u0]

)
+
ν

ε

∣∣∣∣∫ t

0

∫
Ω

e3 × u · ∇ρ dx dτ
∣∣∣∣ .

The previous result is the first step in order to get BD entropy estimates. The problem is

to control the Coriolis term uniformly in ε, the difficulty relying on the lack of informations

on the velocity fields and their gradients. The next lemma gives us the suitable bounds.

Lemma 3.2. There exists a positive constant C, just depending on K0 (defined in Remark

2.2), such that, for any 1 < γ ≤ 2,

ν

ε

∣∣∣∣∫ t

0

∫
Ω

e3 × u · ∇ρ dx dτ
∣∣∣∣ ≤ Cν(1 + t) +

ν

4ε2

∥∥∇2ρ
∥∥2

L2
t (L2)

+
ν

2ε2

∥∥ρ(γ−1)/2∇√ρ
∥∥2

L2
t (L2)

.

From the previous inequality we deduce the BD entropy estimates for our system.
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Proposition 3.2. Let
(
ρ0,ε, u0,ε

)
ε

be a family of initial data satisfying the assumptions

(i)-(ii) of Section 2, and let
(
ρε, uε

)
ε

be a family of corresponding smooth solutions.

Then there exists a constant C > 0 (depending just on the constant K0 of Remark 2.2

and on ν) such that the following inequality holds true for any ε ∈ ]0, 1]:

Fε[ρε](t) +
ν

ε2

∫ t

0

∫
Ω

P ′(ρε) |∇
√
ρε|2 dx dτ +

ν

ε2

∫ t

0

∫
Ω

∣∣∇2ρε
∣∣2 dx dτ ≤ C (1 + t) .

3.2. Bounds for the family of weak solutions. From the previous energy estimates,

we easily deduce the following bounds for the family
(
ρε, uε

)
ε

of weak solutions.

Proposition 3.3. Let
(
ρε, uε

)
ε

be the family of weak solutions to system (2) considered

in Theorem 2.1. Then it satisfies the following bounds, uniformly in ε:

√
ρε uε ∈ L∞

(
R+;L2(Ω)

)
and

√
ρεDuε ∈ L2

(
R+;L2(Ω)

)
for the velocity fields, and for the densities

1

ε
(ρε − 1) ∈ L∞

(
R+;Lγ(Ω)

)
and

1

ε
∇ρε ∈ L∞

(
R+;L2(Ω)

)
.

Remark 3.1. In particular, by interpolation we infer ‖ρε − 1‖L∞(R+;L2(Ω)) ≤ Cε.

BD entropy estimates of Proposition 3.2 also implies the following uniform controls.

Proposition 3.4. Let
(
ρε, uε

)
ε

be the family of weak solutions to system (2) considered

in Theorem 2.1. Then one has the following bounds, uniformly for ε > 0:
∇√ρε ∈ L∞loc

(
R+;L2(Ω)

)
1

ε
∇2ρε ,

1

ε
∇
(
ρ
γ/2
ε

)
∈ L2

loc

(
R+;L2(Ω)

)
.

In particular, the family
(
ε−1 (ρε−1)

)
ε

is bounded in Lploc
(
R+;L∞(Ω)

)
for any 2 ≤ p < 4.

Finally, let us state an important property on the quantity D
(
ρ

3/2
ε uε

)
: by writing

D
(
ρ3/2
ε uε

)
= ρε

√
ρεDuε +

3

2

√
ρε uεDρε

=
√
ρεDuε + (ρε − 1)

√
ρεDuε +

3

2

√
ρε uεDρε .

and the uniform bounds, we infer that
(
D
(
ρ

3/2
ε uε

))
ε

is a bounded family in L2
T (L2 +

L3/2) ↪→ L2
T (L

3/2
loc ).
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4. Strategy of the proof

We outline here the proof of Theorem 2.1. First of all, we study the singular pertur-

bation operator. Then, we focus on the propagation of acoustic-Rossby waves: a direct

application of RAGE Theorem to the wave system will enable us to prove suitable strong

convergence properties, and then to pass to the limit in the non-linear terms. Finally, we

study the limit equation.

4.1. The singular perturbation operator. By uniform bounds, seeing L∞ as the dual

of L1 and denoting by
∗
⇀ the weak-∗ convergence in L∞

(
R+;L2(Ω)

)
, we infer, up to

extraction of subsequences, the following properties:

√
ρε uε

∗
⇀ u in L∞

(
R+;L2(Ω)

)
,

√
ρεDuε ⇀ U in L2

(
R+;L2(Ω)

)
.

Working on the quantity D
(
ρ

3/2
ε uε

)
, it is possible to see that U = Du, as expected, and

then u ∈ L2
(
R+;H1(Ω)

)
.

On the other hand, thanks to the estimates for the density, we deduce that ρε → 1

(strong convergence) in L∞
(
R+;H1(Ω)

)
∩ L2

loc

(
R+;H2(Ω)

)
, with convergence rate of

order ε. So, we can write ρε = 1 + ε rε, with
(
rε
)
ε

bounded in the previous space, and

then (up to an extraction)

(11) rε ⇀ r in L∞
(
R+;H1(Ω)

)
∩ L2

loc

(
R+;H2(Ω)

)
.

It is also easy to get the convergences ρεuε ⇀ u in L2
(
[0, T ];L2(Ω)

)
and ρεDuε ⇀ Du in

L1
(
[0, T ];L2(Ω)

)
∩ L2

(
[0, T ];L1(Ω) ∩ L3/2(Ω)

)
, for any fixed T > 0.

The next statement is usually referred to as the Taylor-Proudman theorem.

Proposition 4.1. Let
(
ρε, uε

)
ε

be a family of weak solutions (in the sense of Definition

2.1 above) to system (2)-(3), with data
(
ρ0,ε, u0,ε

)
satisfying the hypotheses of Section 2.

Let us define rε := ε−1 (ρε − 1), and let (r, u) be a limit point of the sequence
(
rε, uε

)
ε
.

Then r = r(xh) and u =
(
uh(xh), 0

)
, with divhu

h = 0; moreover, they satisfy the

relation uh = ∇⊥h
(
Id −∆h

)
r.
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Thanks to the previous proposition, we can define the singular perturbation operator

(12)
A0 : L2(Ω) × L2(Ω) −→ H−1(Ω) × H−3(Ω)(

r , V
)

7→
(

div V , e3 × V +∇
(
Id −∆

)
r
)
.

Direct computations immediately yield the following property on the spectrum of A0.

Proposition 4.2. Let us denote by σp(A0) the point spectrum of A0. Then σp(A0) = {0}.

In particular, if we define by EigenA0 the space spanned by the eigenvectors of A0, we

have EigenA0 ≡ KerA0.

4.2. Propagation of acoustic-Rossby waves. The present paragraph is devoted to

the analysis of the acoustic waves. We start by rewriting system (2) in the form

(13)


ε ∂trε + div Vε = 0

ε ∂tVε +
(
e3 × Vε + ∇

(
Id −∆

)
rε

)
= ε fε ,

where we have set Vε := ρε uε and

fε := − div (ρεuε ⊗ uε) + ν div (ρεDuε) −(14)

− 1

ε2
∇
(
P (ρε)− P (1)− P ′(1) (ρε − 1)

)
+

1

ε2

(
ρε − 1

)
∇∆ρε .

System (13) has to be read in the weak sense specified by Definition 2.1: in particular,

for any ψ ∈ D
(
[0, T [×Ω;R3

)
, we have to test the momentum equation on ρε ψ. Keeping

in mind the formula

〈fε, φ〉 :=

∫
Ω

(
ρεuε ⊗ uε : ∇φ − ν ρεDuε : ∇φ − 1

ε2
∆ρε∇ρε · φ −

− 1

ε2

(
ρε − 1

)
∆ρε div φ +

1

ε2

(
P (ρε)− P (1)− P ′(1) (ρε − 1)

)
div φ

)
dx ,

a systematic use of uniform bounds gives
(
fε
)
ε
⊂ L2

T

(
W−1,2(Ω) +W−1,1(Ω)

)
.

The main goal, now, is to apply the RAGE Theorem (see e.g. [5]) to prove dispersion of

the components of the solutions which are orthogonal to KerA0. Such a kind of arguments

were used in [9], in dealing with the compressible barotropic Navier-Stokes equations with

Coriolis force.
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Theorem 4.1 (RAGE). LetH be a Hilbert space and B : D(B) ⊂ H −→ H a self-adjoint

operator. Denote by Πcont the orthogonal projection onto the subspace Hcont, where we set

H = Hcont⊕Eigen(B) and Θ is the closure of a subset Θ in H. Finally, let K : H −→ H

be a compact operator. Then, in the limit for T → +∞ one has∥∥∥∥ 1

T

∫ T

0

e−i tB K Πcont e
i tB dt

∥∥∥∥
L(H)

−→ 0 .

The previous theorem implies the following consequences.

Corollary 4.1. Under the hypotheses of Theorem 4.1, suppose also that K is self-adjoint,

with K ≥ 0. Then there exists a function µ, with µ(ε)→ 0 for ε→ 0, such that:

1) for any Y ∈ H and any T > 0, one has

1

T

∫ T

0

∥∥K1/2 ei tB/ε ΠcontY
∥∥2

H dt ≤ µ(ε) ‖Y ‖2
H ;

2) for any T > 0 and any X ∈ L2
(
[0, T ];H

)
, one has

1

T 2

∥∥∥∥K1/2 Πcont

∫ t

0

ei (t−τ)B/εX(τ) dτ

∥∥∥∥2

L2([0,T ];H)

≤ µ(ε) ‖X‖2
L2([0,T ];H) .

We now come back to our problem. For any fixed M > 0, define the space HM by

HM :=
{

(r, V ) ∈ L2(Ω)× L2(Ω)
∣∣ r̂(ξh, k) ≡ 0 , V̂ (ξh, k) ≡ 0 for

∣∣ξh∣∣+ |k| > M
}

:

it is a Hilbert space, endowed with the scalar product

(15) 〈(r1, V1) , (r2, V2)〉HM
:= 〈r1 , (Id −∆)r2〉L2 + 〈V1 , V2〉L2 .

In fact, it is easy to verify that the previous bilinear form is symmetric and positive

definite. Moreover, we have ‖(r, V )‖2
HM

=
∥∥(Id −∆)1/2r

∥∥2

L2 + ‖V ‖2
L2 . Straightforward

computations also show that A0 is skew-adjoint with respect to 〈 · , · 〉HM
:

〈A0(r1, V1) , (r2, V2)〉HM
= −〈(r1, V1) , A0(r2, V2)〉HM

.

Let PM : L2(Ω)× L2(Ω) −→ HM be the orthogonal projection onto HM . For a fixed

θ ∈ D(Ω) such that 0 ≤ θ ≤ 1, we define the operator

KM,θ(r, V ) :=
((

Id −∆
)−1

PM
(
θ PMr

)
, PM

(
θ PMV

))
.
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Note that KM,θ is self-adjoint and positive with respect to the scalar product 〈 · , · 〉HM
;

moreover it is compact by Rellich-Kondrachov theorem.

We want to apply the Theorem 4.1 to

H = HM , B = iA0 , K = KM,θ and Πcont = Q⊥ ,

where Q and Q⊥ are the orthogonal projections onto respectively KerA0 and
(
KerA0

)⊥
.

We set (rε,M , Vε,M) := PM(rε, Vε): from system (13) we get

(16) ε
d

dt

(
rε,M , Vε,M

)
+ A

(
rε,M , Vε,M

)
= ε

(
0 , fε,M

)
,

where
(
0 , fε,M

)
∈ H∗M

∼= HM acts on any (s,W ) ∈ HM like 〈
(
0, fε

)
,
(
s, PM

(
ρεW

))
〉HM

.

By Bernstein inequalities, for any T > 0 fixed and any W ∈ HM one has∥∥PM(ρεW)∥∥L2
T (W 1,∞∩H1)

≤ C(M) ‖ρεW‖L2
T (L2)

≤ C(M)
(
‖W‖L2

T (L2) + ‖ρε − 1‖L∞
T (L2) ‖W‖L2

T (L∞)

)
,

for some constant C(M) depending only on M . This fact, combined with the uniform

bounds we established on fε, entails
∥∥(0, fε,M)∥∥L2

T (HM )
≤ C(M). Therefore, applying

Q to (16) and using uniform bounds for
(
∂tQ

(
rε,M , Vε,M

))
ε

(with respect to ε, for any

M > 0 fixed), Ascoli-Arzelà Theorem implies, for ε→ 0, the strong convergence

(17) Q
(
rε,M , Vε,M

)
−→

(
rM , uM

)
in L2

(
[0, T ]×K

)
.

On the other hand, by Duhamel’s formula, solutions to equation (16) can be written as

(18)
(
rε,M , Vε,M

)
(t) = ei tB/ε

(
rε,M , Vε,M

)
(0) +

∫ t

0

ei (t−τ)B/ε (0 , fε,M) dτ .
Note that, by definition (and since [PM , Q] = 0),∥∥∥(KM,θ)

1/2 Q⊥
(
rε,M , Vε,M

)∥∥∥2

HM

=

∫
Ω

θ
∣∣Q⊥(rε,M , Vε,M

)∣∣2 dx .
Therefore, a straightforward application of Corollary 4.1 (recalling also Proposition 4.2)

gives that, for T > 0 fixed and for ε going to 0,

(19) Q⊥
(
rε,M , Vε,M

)
−→ 0 in L2

(
[0, T ]×K

)
for any fixed M > 0 and any compact set K ⊂ Ω.
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4.3. Passing to the limit. Thanks to relations (19) and (17), and to a careful analysis

of the high frequencies remainders, we deduce the following proposition.

Proposition 4.3. For any T > 0, for ε→ 0 one has, up to extraction of a subsequence,

the strong convergences

rε −→ r and ρ3/2
ε uε −→ u in L2

(
[0, T ];L2

loc(Ω)
)
.

As a consequence of Proposition 4.3 and uniform bounds, by interpolation we get also

the strong convergence

(20) ∇rε −→ ∇r in L2
(
[0, T ];L2

loc(Ω)
)
.

In order to compute the limit system, let us take φ ∈ D
(
[0, T [×Ω

)
, with φ = φ(xh),

and use ψ =
(
∇⊥h φ, 0

)
as a test function in equation (7). Since divψ = 0, we get∫ T

0

∫
Ω

(
−ρ2

ε uε · ∂tψ − ρεuε ⊗ ρεuε : ∇ψ +(21)

+ ρ2
ε (uε · ψ) div uε +

1

ε
e3 × ρ2

εuε · ψ + νρεDuε : ρε∇ψ +

+ νρεDuε : (ψ ⊗∇ρε) +
2

ε2
ρε∆ρε∇ρε · ψ

)
dx dt =

∫
Ω

ρ2
0,ε u0,ε · ψ(0) dx .

Now we rewrite the rotation term by using the weak formulation of the mass equation:

1

ε

∫ T

0

∫
Ω

e3 × ρ2
εuε · ψ =

1

ε

∫ T

0

∫
Ω

ρεu
h
ε · ∇hφ +

1

ε

∫ T

0

∫
Ω

(ρε − 1) ρεu
h
ε · ∇hφ

= −
∫

Ω

r0,ε φ(0) −
∫ T

0

∫
Ω

rε ∂tφ +

∫ T

0

∫
Ω

rε ρε u
h
ε · ∇hφ .

Due to the strong convergence of rε in L2
T (L2), it is easy to see that the expression on the

right-hand side of the previous relation converges.

Concerning the capillarity term, we can write

2

ε2

∫ T

0

∫
Ω

ρε∆ρε∇ρε · ψ =
2

ε2

∫ T

0

∫
Ω

∆ρε∇ρε · ψ +
2

ε2

∫ T

0

∫
Ω

(ρε − 1) ∆ρε∇ρε · ψ .

By uniform bounds, we gather that the second term goes to 0; on the other hand, com-

bining (20) with the weak convergence of ∆rε in L2
T (L2) implies that also the first term

converges for ε→ 0.
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Putting these last two relations into (21) and using convergence properties established

above in order to pass to the limit, we arrive at the equation∫ T

0

∫
Ω

(
−u · ∂tψ − u⊗ u : ∇ψ − r ∂tφ +

+ r uh · ∇hφ + νDu : ∇ψ + 2 ∆r∇r · ψ
)
dx dt =

∫
Ω

(
u0 · ψ(0) + r0 φ(0)

)
dx .

Now we use that ψ =
(
∇⊥h φ, 0

)
and that, by Proposition 4.1, u =

(
∇⊥h r̃, 0

)
, where we

have set r̃ := (Id −∆); recall also that all these functions do not depend on x3. Then,

integrating by parts, it is easy to prove that the previous expression equals the weak

formulation (in the classical sense) of the Quasi-Geostrophic type equation of Theorem

2.1, which is now completely proved.

5. Remarks for variable rotation axis

Let us spend here a few words on the case of variable rotation axis, namely when the

Coriolis operator is given by

(22) C(ρ, u) = c e3 × ρ u ,

for a suitable non-constant function c. This is important, since considering a constant

rotation axis is an approximation which is physically consistent in regions which are very

far from the equatorial zone and from the poles, and which are not too extended: in

general, the dependence of the Coriolis force on the latitude should be taken into account.

The case of variable axis (22) was considered first in [10] by Gallagher and Saint-

Raymond for the classical incompressible Navier-Stokes equations. There, the authors

assumed that c = c(xh) is a smooth function of the horizontal variables only, and that it

satisfies the following non-degeneracy condition:

(23) lim
δ→0
L
({
xh ∈ R2

∣∣∣ ∣∣∇hc(x
h)
∣∣ ≤ δ

})
= 0 ,

where L(O) denotes the 2-dimensional Lebesgue measure of a set O ⊂ R2. The previous

techincal assumptions are motivated by the strategy of the proof.

As a matter of fact, one has to remark that, for variable rotation axis, the singular per-

turbation operator becomes variable coefficients, so that spectral analysis is out of use.
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Then, the idea is to resort to compensated compactness arguments to prove the conver-

gence in the non-linear terms: namely, after a regularization procedure and integration

by parts, one takes advantage of the structure of the system to find special cancellations

and properties which enable to pass to the limit.

Let us mention that the same technique was used also in [8] by Feireisl, Gallagher,

Gérard-Varet and Novotný, in dealing with the compressible barotropic Navier-Stokes

equations with Earth rotation, when centrifugal force is taken into account. Indeed, the

presence of this last term allows to consider non-constant limit density profiles ρ̃ in the

regime of low Mach number, and therefore variable coefficients appear in the singular

perturbation operator. We point out that the previous technical assumptions on c are

replaced in paper [8] by suitable properties for ρ̃, which can be deduced by the analysis

of its diagnostic equation.

Let us come back to the case of Navier-Stokes-Korteweg system (1), with C given by

(22) and still satisfying hypothesis (23). We focus again on the case α = 0 (the other

values of α can be treated in an analogous way), and we suppose the pressure term P

to be now given by the sum of a standard barotropic law Pb and a singular law Ps, in

order to recover stability of the system even on vacuum and to resort to the classical weak

formulation (see Section 1 above). For simplicity of exposition, we omit here the precise

assumptions on the singular pressure law and on the initial data: very few things change

with respect to Section 2, and one has just to add a condition on 1/ρ0,ε in order to exploit

the presence of Ps in the energy estimates.

For notation convenience, let us also introduce the operator Dc: for any scalar function

f = f(xh), we set Dc(f) := Dh

(
c−1∇⊥h f

)
.

In [7] we proved the following convergence result, where we looked for minimal regularity

assumptions for c.

Theorem 5.1. Under the previous hypotheses, suppose that c ∈ W 1,∞(R2) is 6= 0 almost

everywhere and it verifies condition (23). Let us also assume that ∇hc ∈ Cµ(R2), for

some admissible modulus of continuity µ.
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Let
(
ρε , uε

)
ε

be a family of weak solutions (in the classical sense) to system (2)-(3) in

[0, T ]× Ω, related to (suitable) initial data
(
ρ0,ε, u0,ε

)
ε
. Define rε := ε−1 (ρε − 1).

Then, up to the extraction of a subsequence, one has the same convergence properties

(a)-(b) of Theorem 2.1, where, this time, r = r(xh) and u =
(
uh(xh), 0

)
verify the relation

c(xh)uh = ∇⊥h (Id −∆h) r. Moreover, r solves (in the weak sense) the equation

∂t

(
r − divh

(
1

c2
∇h

(
Id −∆h

)
r

))
+ ν tDc ◦ Dc

(
(Id −∆h)r

)
= 0

supplemented with the initial condition r|t=0 = r̃0, where r̃0 is defined by

r̃0 − divh

(
1

c2
∇h

(
Id −∆h

)
r̃0

)
=

∫ 1

0

(
curlh

(
c−1 uh0

)
+ r0

)
dx3 .

Remark 5.1. Notice that the limit equation is linear for variable rotation axis: indeed,

the dynamics is much more constrained in this case. Let us also note the appearance of

variable coefficients in the limit equation.

The proof of Theorem 5.1 uses analogous arguments as those in [10]. The main novelty

here is the presence of an additional non-linear term, due to capillarity; nonetheless, it

turns out that this item exactly cancels out with another one, coming from the analysis of

the convective term. In addition, the regularization process presents some complications

with respect to [10], because one has less available controls for the velocity fields.

As it was already the case in [10], the compensated compactness arguments work under

high regularity assumptions on the function c: here, we looked for minimal conditions

for it in order to prove the result. Having c ∈ W 1,∞ seems to be a necessary hypothesis,

together with (23), for making this strategy work; on the other hand, boundedness of the

second derivatives was used in [10] to control some remainders created by the regulariza-

tion procedure (essentially, commutators between a smoothing operator and the variable

coefficient). Theorem 5.1 shows that it is sufficient to have ∇hc continuous, for some

admissible modulus of continuity µ; in [7] we also proved that, if µ decays to 0 suitably

fast (so fast to annihilate a logarithmic divergence), then it is enough to impose Zygmund

type conditions and to control the second variation of ∇c by µ.
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