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Abstract. We investigate the so-called Hopf lemma for certain degenerate-elliptic equa-

tions at characteristic boundary points of bounded open sets. For such equations, the

validity of the Hopf lemma is related to the fact that the boundary of the open set reflects

the underlying geometry of the specific operator. We present here some recent results

obtained in [21] in collaboration with V. Martino. Our main focus is on conditions on

the boundary which are stable by changing our operators in some particular classes, for

example in the class of horizontally elliptic operators in non-divergence form. We also

study what happens to these conditions for degenerate operators with first order terms.

Sunto. Si desidera investigare il cosiddetto lemma di Hopf per alcune equazioni

ellittico-degeneri nei punti del bordo di un aperto limitato che siano caratteristici per

l’operatore. Per tali equazioni, la validità del lemma di Hopf è legata al fatto che il bordo

dell’aperto rifletta in qualche modo la geometria che soggiace l’operatore in questione.

Vengono qui presentati alcuni recenti risultati contenuti in [21], ottenuti in collaborazione

con V. Martino. Si vuole prestare particolare attenzione a condizioni sul bordo che

siano stabili al variare dell’operatore in particolari classi, per esempio nella classe degli

operatori orizzontalmente ellittici in forma di non-divergenza. Si studia anche come

cambiano queste condizioni sul bordo nel caso di operatori degeneri che ammettano

termini del primo ordine.
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1. Introduction

Let Ω be a bounded open set in RN with smooth (at least of class C2) boundary,

y ∈ ∂Ω, and ν the inner unit normal to ∂Ω at y. We say that a second-order linear

partial differential operator L satisfies the Hopf lemma in Ω at y ∈ ∂Ω if, for any u ∈

C2(Ω ∩W ) ∩ C1 ((Ω ∩W ) ∪ {y}), we have

(1)


Lu ≤ 0 in Ω ∩W,

u > 0 in Ω ∩W,

u(y) = 0

⇒ ∂u

∂ν
(y) > 0,

where W is an open neighborhood of y. For us L will denote an operator in the form

L =
∑N

i,j=1 aij(p)∂
2
ij +

∑N
k=1 bk(p)∂k: we can think the coefficients aij and bk to be contin-

uous functions in some open set O ⊃ Ω, and A(p) = (aij(p))
N
i,j=1 a symmetric nonnegative

definite N ×N matrix never identically vanishing. These last conditions ensure in partic-

ular the validity of a weak maximum principle for L (see, e.g, [12]). On the other hand

all the operators will be truly degenerate, in the sense that the matrix A will have a

non-trivial kernel: in this regard it is crucial the following definition.

Definition 1.1. We say that y ∈ ∂Ω is characteristic for (L,Ω) if A(y)ν = 0.

To the best of our knowledge, the first Hopf lemma is due to Zaremba [32] who rec-

ognized that, for the case of the Laplace operator L = ∆, an interior ball condition for

Ω ensure the validity of (1). Then, the celebrated and independent papers by Hopf [9]

and Oleinik [28] proved that the interior ball condition, which is suitable for ∆, is in

fact suitable with respect to the Hopf lemma for every uniformly elliptic operator in non-

divergence form with measurable coefficients. Besides these classical works, Hopf lemmas

have been extensively studied under several points of view (see e.g. [8, 11, 16, 2, 26]). Since

the proofs in [9, 28], there is a strict relationship with the concept of barrier functions.

Definition 1.2. Let y ∈ ∂Ω. We say that a function h is an L-barrier function for Ω at

y if

· h is a C2 function defined on an open bounded neighborhood U of y,
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· h(y) = 0,

· {p ∈ U : h(p) ≥ 0}r {y} ⊆ Ω,

· Lh ≥ 0 in {p ∈ U : h(p) > 0},

· ∇h(y) 6= 0.

It is in fact known the following

Proposition 1.1. Fix y ∈ ∂Ω. The existence of an interior L-barrier function for Ω at

y implies the validity of the Hopf lemma for L in Ω at y.

Proof. Let u as in (1) and consider an L-barrier function h for Ω at y, defined on U .

Let ρ > 0 such that Bρ(y) ⊂ U ∩ W . We set V = {p ∈ Bρ(y) : h(p) > 0}, which

is contained in Ω. We write ∂V = Γ1 ∪ Γ2, where Γ1 = {p ∈ Bρ(y) : h(p) = 0} and

Γ2 = ∂V r Γ1. Since Γ2 ⊂ ∂Bρ(y) ∩ Ω, we have m = minΓ2
u is strictly positive. Let us

also put M = maxV h > 0. For 0 < ε < m
M

, we consider u − εh. By construction we get

u−εh ≥ 0 on ∂V and L(u−εh) ≤ 0 in V . By the Weak Maximum Principle for L, u ≥ εh

in V . Since the inner unit normal to ∂Ω at y is given by ν = ∇h(y)
‖∇h(y)‖ and y + tν ∈ V for

small positive t, we obtain ∂u
∂ν

(y) ≥ ε∂h
∂ν

(y) = ε ‖∇h(y)‖ > 0. �

Smooth domains have the interior ball property at any point y ∈ ∂Ω, i.e. there exists a

ball Br0(p0) such that Br0(p0) r {y} ⊂ Ω. This is the reason why it is easy to find an

L-barrier function h for Ω at y in the case y is non-characteristic for (L,Ω). As a matter

of fact, for α > 0 big enough, the function hα(p) = e−α‖p−p0‖2 − e−αr2
0 is a barrier in a

neighborhood of the non-characteristic point y (see e.g. [3]).

Therefore the real issue for the validity of the Hopf lemma is at the characteristic points.

In the literature there are some positive and negative results for specific degenerate-elliptic

operators. The references [4, 27, 23, 25] deal respectively with the case of the Kohn

Laplacian in the Heisenberg group, generalized Greiner operators, and some Grushin-type

operators. They pointed out that the boundary of the domain has somehow to reflect

the geometry of the operator under consideration if one wants that the Hopf lemma holds

true. The Zaremba’s interior ball condition is thus replaced with an analogous condition

regarding the level sets of the fundamental solution, which allows to find suitable barriers.
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In Section 2, we follow at first these research lines by considering sub-Laplacians ∆G in

general homogeneous Carnot groups: we thus show the validity of a Zaremba-type result

under the condition regarding the level sets of the fundamental solution of ∆G. Then, we

focus on Hopf/Oleinik-type results. We consider the vector fields X1, . . . , Xm generating a

step-two Carnot algebra and we look at the class of operators in the form
∑m

i,j=1 qijXiXj,

with (qij) uniformly positive definite. We show that an interior homogeneous G-ball

condition is suitable for every operator in this class. In Section 3 we analyze the case of

operators with the presence of first-order terms. We want to deal with the model cases of

∂2
xx +x2∂2

tt±∂t, ∂2
xx +x2∂2

tt±x∂t in order to understand the right conditions on Ω to have

the Hopf property. We close the section by considering the same problem in the case of

the sum of the squares of two vector fields in R3 satisfying the Hörmander condition at

a characteristic point. In Section 4, we sum up the previous conditions and we exhibit

a natural bounded open set where the Hopf lemma is satisfied at any point for all the

non-divergence form operators uniformly elliptic along the vector fields ∂x, x∂t in R2.

All the complete proofs of the announced results are contained in [21]. In [21] it is also

discussed a nonlinear degenerate-elliptic case, namely the operator describing the Levi

curvature for a real hypersurface in C2 (see [7]). Here we are not going to present this

case, but we do want to mention that this is actually one of the first motivations for

our investigations. As a matter of fact, the Hopf lemma for elliptic operators has been

historically a crucial tool to get symmetry results via the moving planes technique (see e.g.

[1, 29, 14, 15]). Symmetry results for the Levi operator have been proved in the literature

[22, 10, 24, 18, 19, 20]. Nevertheless an Alexandrov-type result for the Levi curvature

in its generality is still an open problem. That is why in this work we have decided to

study some classes of linear operators which are strictly related with the linearization of

the Levi operator.
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2. Zaremba-type and Hopf/Oleinik-type results

As we mentioned, at characteristic points the Hopf property may not hold true. Let us

consider for example, in R3, the Kohn Laplacian on the Heisenberg group

∆Hu(x1, x2, t) = ∂2
x1x1

+ ∂2
x2x2
− x2∂

2
x1t

+ x1∂
2
x2t

+
1

4
(x2

1 + x2
2)∂2

tt = (X2
1 +X2

2 )u,

where X1 = ∂x1 − 1
2
x2∂t, X2 = ∂x2 + 1

2
x1∂t. If y = 0 ∈ ∂Ω and the inner unit normal is

(0, 0, 1) at 0, then 0 is characteristic for (∆H,Ω). We have the following

Counterexample 2.1. Suppose Ω locally around 0 is described by {(x, t) ∈ R3 : t >

1
4
(x2

1 +x2
2)}. Let us consider u(x, t) = t2− 1

16
(x2

1 +x2
2)2. Of course, u(0) = 0 and u > 0 in

Ω (we can assume Ω ⊆ {t > 1
4
(x2

1 + x2
2)}). Moreover ∆Hu(x, t) = −1

2
(x2

1 + x2
2) ≤ 0. But

∂u
∂ν

(0) = ∂tu(0) = 0, thus ∆H does not satisfy the Hopf lemma in Ω at 0.

Despite this counterexample, it is possible to put some natural conditions on Ω to

ensure the validity of the Hopf lemma for ∆H. This was done by Birindelli and Cutŕı in

[4, Lemma 2.1]: as far as we know, this was the first example in literature of Hopf lemma

for a degenerate-elliptic operator at a characteristic point. They proved that an interior

Koranyi-ball condition for Ω allows to find a barrier. The first thing we want to do is to

prove such result in generic homogeneous Carnot groups. To this purpose let us recall

some notions (more details can be found in [5]).

Let G = (RN , ◦, δλ) be a homogeneous Carnot group, with homogeneous dimension

Q ≥ 3. Let us fix X1, . . . , Xm left-invariant vector fields δλ-homogeneous of degree 1,

which generate the first layer of the Lie algebra of G (2 ≤ m < N). We want to consider

the degenerate-elliptic operator ∆G =
∑m

j=1 X
2
j . We put Γ(· ; p0) its fundamental solution

with pole at p0. Let us denote the G-gauge balls centered at p0 ∈ G with radius r by

(2) BG
r (p0) =

{
p ∈ RN : Γ(p; p0) >

1

rQ−2

}
,

i.e. the superlevel sets of the fundamental solution. We call them balls since Γ(p; p0)
1

2−Q

defines a homogeneous symmetric norm, satisfying a pseudo-triangle inequality. By ex-

ploiting the fundamental solution as ∆G-barrier function, we can prove the following
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Proposition 2.1. Let us assume there exist p0 and r0 such that

y ∈ ∂BG
r0

(p0), BG
r0

(p0) r {y} ⊂ Ω.

Then ∆G satisfies the Hopf lemma in Ω at y.

If G is the Heisenberg group H, the G-ball in (2) defines the Koranyi-ball, i.e. the metric

balls with respect to the distance d((x1, x2, t), 0) = ((x2
1 + x2

2)2 + 16t2)
1
4 . The assumption

in Proposition 2.1 is saying that ∂Ω at the characteristic point has to be enough flat for

the Hopf property to hold (so that to avoid behavior as in Counterexample 2.1). This is

the same condition as in [4]. They used a different barrier, i.e. an exponential barrier of

Hopf type.

In all the references [4, 27, 23, 25] and in our Proposition 2.1 the differential operator

is fixed, and somehow also the related geometry. We want now to discuss the issue of the

stability of the assumptions on Ω if we change the operator. Let us consider the following

operators

(3) LQ =
m∑

i,j=1

qij(p)XiXj

where Q(p) is symmetric and uniformly positive definite, i.e. λIm ≤ Q(p) ≤ ΛIm for some

Λ ≥ λ > 0.

Remark 2.1. For operators as in (3) the condition of being characteristic is independent

of the choice of the positive definite matrix Q, but it is determined just by the vector fields.

A point y ∈ ∂Ω is in fact characteristic iff Xj(y) is tangent to ∂Ω for all j ∈ {1, . . . ,m}.

If X1, . . . , Xm are the generators of the first (horizontal) layer of a homogeneous Carnot

group, the operators in (3) are called horizontally elliptic operators. We are going to show

an Hopf/Oleinik-type result in the case when the step of nilpotence of the Lie algebra is

two. Let us fix some notations. Fix G = (RN , ◦, δλ) such that the composition law ◦ is

defined by

(x, t) ◦ (ξ, τ) =

(
x+ ξ, t+ τ +

1

2
〈Bx, ξ〉

)
,

for (x, t), (ξ, τ) ∈ Rm×Rn = RN . Here we have denoted by 〈Bx, ξ〉 the vector of Rn whose

components are
〈
Bkx, ξ

〉
(for k = 1, . . . , n) and B1, . . . , Bn are m×m linearly independent
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skew-symmetric matrices. The group of dilations is defined as δλ((x, t)) = (λx, λ2t) and

the inverse of (x, t) is (−x,−t). Up to fixing a stratification of the Lie algebra and applying

a canonical isomorphism (see [5, Theorem 3.2.2]), a generic step-2 Carnot group is of this

form. We can choose as homogeneous symmetric norm the function d : RN −→ R such

that

d ((x, t)) =
(
‖x‖4 + ‖t‖2) 1

4 ;

from here on we denote by ‖·‖ both the Euclidean norms in Rm and in Rn. Hence, we

have the homogeneous G-ball B2
r (x0, t0) = (x0, t0) ◦Br(0), where

B2
r (0) = {(x, t) ∈ RN : ‖x‖4 + ‖t‖2 < r4}.

Let us fix

(4) Xi = ∂xi +
1

2

n∑
k=1

(Bkx)i∂tk for i = 1, . . . ,m.

These m vector fields are left-invariant and δλ-homogeneous of degree 1: they generate

the first layer of the Lie algebra of G. We want to consider the operator LQ as in (3) with

respect to these specific vector fields. By exploiting the barriers built in [30] (and then

used in [31]), we have the following

Theorem 2.1. Let Ω be an open and bounded set in RN , and let y = (ξ, τ) ∈ ∂Ω be a

characteristic point. Let us assume there exist (ξ0, τ0) ∈ Ω and r0 > 0 such that

y ∈ ∂B2
r0

(ξ0, τ0), B2
r0

(ξ0, τ0) r {y} ⊂ Ω.

Then LQ satisfies the Hopf lemma in Ω at y, for any horizontally elliptic operator in the

step-2 Carnot group G.

If we think of the example of the Heisenberg group, we are saying that the Koranyi-ball

condition which is natural for the sum of squares ∆H is appropriate also for operators as

in (3) with respect to the Heisenberg vector fields.
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3. Examples and counterexamples with first-order terms

If we consider vector fields different from the ones in (4), the statement analogous to

Theorem 2.1 is false as we can see with the following counterexample.

Remark 3.1. Let us consider in R2 the two vector fields X1 = ∂x and X2 = x∂t. If

we look at the operator X2
1 + X2

2 = ∂2
xx + x2∂2

tt, we can realize that an Hopf lemma at

characteristic points can be proved under the assumption of the interior homogeneous ball

{x4 + t2 < r4} (see [23, 25]). On the other hand, if we consider the operators as in (3)

built with respect to these two vector fields, this condition is not the right one. As a matter

of fact, let us pick

Q =

 1 −1
2

−1
2

1

 and LQ = ∂2
xx − x∂2

xt + x2∂2
tt −

1

2
∂t.

Fix Ω such that it is contained in the halfspace {t > 0}, but it is flat enough to have the

interior homogeneous ball property at (0, 0). Consider the function u(x, t) =
(
t+ 1

8
x2
)α

with 0 < α−1 < 1
26

. A straightforward calculation shows this is a counterexample to Hopf

for LQ.

The reason of the behavior described in Remark 3.1 is the presence of the first order

term −1
2
∂t. In order to understand what happens in presence of such terms, we will

always denote in this section by Ω a bounded open set in some RN such that 0 ∈ ∂Ω, the

positive t-direction determines the inner unit normal and it is a characteristic direction

for the operator at 0.

Following Birindelli and Cutŕı [4, Remark 2], we can see that the Koranyi-ball condition

for Ω ⊂ R3 at 0 is enough to ensure the Hopf property also for an operator like

∆H + k1(x, t)∂x1 + k2(x, t)∂x2 + (x2
1 + x2

2)γ(x, t)∂t,

with bounded k1, k2, γ. The barrier can be chosen as for ∆H. This is the exact behavior

Monticelli noted in [25, Lemma 4.1] for Grushin-type equations. He proved in particular

a Hopf lemma in Ω ⊂ R2 at 0 for operators like

∂2
xx + x2∂2

tt + k(x, t)∂x + x2γ(x, t)∂t,
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with bounded k and γ, under a homogeneous interior ball condition. Having in mind

these examples and Remark 3.1, we want to understand the behavior of Ω if we want an

Hopf lemma for operators as ∆H ± ∂t, ∂2
xx + x2∂2

tt ± ∂t, ∂2
xx + x2∂2

tt ± x∂t. In order to do

this let us go back to the heat operator, seen as a degenerate elliptic operator in RN+1.

Remark 3.2. Let us denote H = H− = ∆x − ∂t in RN+1. Suppose Ω strictly contains

{(x, t) ∈ RN+1 : t+ 1
2N
‖x‖2 > 0}, at least locally around 0. Then h(x, t) = t+ 1

2N
‖x‖2 is

clearly an H-barrier function for Ω at 0, and thus H satisfies the Hopf lemma in Ω at 0.

We cannot do much more better than this. As a matter of fact, suppose that Ω is contained

in the region {(x, t) ∈ RN+1 : t + β0 ‖x‖2 > 0}, for some 0 < β0 < 1
2N

. Then, we

can choose β0 < β < 1
2N

and ε = (β−β0)(1−2βN)
4β2 > 0, and we can consider u(x, t) =

(t + β ‖x‖2)1+ε. This function is C2(Ω) ∩ C1(Ω ∪ {0}), u(0) = 0, u > 0 in Ω, and

ut(0) = 0. Moreover

Hu(x, t) = −(1− 2βN)(1 + ε)(t+ β ‖x‖2)−1+ε
(
t+ β0 ‖x‖2) ≤ 0 in Ω.

Therefore u is a counterexample to the Hopf property in Ω. We stress that t ∼ − 1
2N
‖x‖2

is the behavior of the level set of the fundamental solution for H up to lower order terms

(fundamental solution with pole at some (0,− |t0|) and passing through 0).

The operator H+ = ∆x+∂t has the same behavior. It satisfies the Hopf lemma in the sets

Ω which are “flat enough” to contain strictly the paraboloid {(x, t) ∈ RN+1 : t > 1
2N
‖x‖2}.

And it does not satisfies the Hopf lemma in Ω if Ω is contained in a region delimited by

a steeper paraboloid {(x, t) ∈ RN+1 : t > β0 ‖x‖2}, for some β0 >
1

2N
.

Despite the non-parabolicity aspects, the degenerate-elliptic operators

∆H ± ∂t, ∂2
xx + x2∂2

tt ± ∂t

behave the same way as H± regarding to the Hopf-property at 0. As a matter of fact, if

there exists an open neighborhood U of 0 such that{
(x1, x2, t) ∈ U ⊂ R3 : t ≥ ±1

4
(x2

1 + x2
2)

}
r {(0, 0, 0)} ⊂ Ω ⊂ R3

or

{
(x, t) ∈ U ⊂ R2 : t ≥ ±1

2
x2

}
r {(0, 0)} ⊂ Ω ⊂ R2,
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then (respectively) ∆H ± ∂t or ∂2
xx + x2∂2

tt ± ∂t satisfies the Hopf lemma in Ω at 0. The

barriers can be easily constructed as h(x1, x2, t) = t∓ 1
4
(x2

1 + x2
2) or h(x, t) = t∓ 1

2
x2.

On the other hand, as in Remark 3.2, the conditions on Ω cannot be improved drastically.

If

Ω ⊆ {(x1, x2, t) ∈ R3 : t > ±β0(x2
1 + x2

2)} for some positive β0 ≷
1

4

or Ω ⊆ {(x, t) ∈ R2 : t > ±β0x
2} for some positive β0 ≷

1

2
,

then the Hopf lemma does not hold true in Ω at 0. The functions u(x1, x2, t) = (t∓β(x2
1 +

x2
2))α or u(x, t) = (t∓ βx2)α work as counterexamples for suitable choices of α > 1 and β

(β0 ≷ β ≷ 1
4

or β0 ≷ β ≷ 1
2
).

Remark 3.3. We can perform an analysis similar to Remark 3.2 for

∂2
xx + x∂t, in R2.

This is well-studied in literature: it is the stationary part of the Kolmogorov operator, and

it is an example of the so-called degenerate Ornstein-Uhlenbeck operators (see [13, 17, 6]).

Suppose there exists an open neighborhood U of 0 such that{
(x, t) ∈ U ⊂ R2 : t ≥ 1

6
x3

}
r {(0, 0)} ⊂ Ω,

then ∂2
xx + x∂t satisfies the Hopf lemma in Ω at 0. As before, a barrier can be easily

constructed as h(x, t) = t − 1
6
x3. In order to construct counterexamples analogue to the

previous ones, let us define the following function

fβ±
0

(x) =


β+

0 x
3 if x > 0

β−0 x
3 if x < 0.

Suppose that

Ω ⊆
{

(x, t) ∈ R2 : t > fβ±
0

(x)
}

for some β+
0 > 1

6
and 0 < β−0 < 1

6
. Then, we can consider the function u(x, t) = (t−fβ±)α,

with β+
0 > β+ > 1

6
, β−0 < β− < 1

6
, and α > 1. The function fβ± is smooth enough to

ensure that u ∈ C2(Ω)∩C1(Ω∪ {0}). Moreover u is positive in Ω, and u(0) = ut(0) = 0.
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Suitable choices of β+, β−, α give (∂2
xx + x∂t)u ≤ 0 in Ω and u is thus a counterexample

to the Hopf lemma in Ω.

Let us now turn our attention to the degenerate-elliptic operator

∂2
xx + x2∂2

tt + x∂t.

Also for this one, assuming that there exists an open neighborhood U of 0 such that{
(x, t) ∈ U ⊂ R2 : t ≥ 1

6
x3

}
r {(0, 0)} ⊂ Ω,

(∂2
xx + x2∂2

tt + x∂t) satisfies the Hopf property in Ω at 0: h(x, t) = t − 1
6
x3 is in fact

still a barrier. However we cannot be as precise as in Remark 3.3. We are able to

find a counterexample just assuming that Ω ⊆ {(x, t) ∈ R2 : t > β0x
2} for some positive

β0. In this case, by taking 0 < β < β0 and considering Ω ⊂ {x2 ≤ β2}, the function

u(x, t) = (t− βx2)α works as counterexample to Hopf in Ω for some α > 1.

Remark 3.4. Let us just mention that, for any k ∈ N, the operator

∂2
xx + xk∂t, in R2,

behaves regarding the Hopf property as the ones described in Remark 3.2 (in the case of k

even) and Remark 3.3 (for k odd) with the natural adjustments.

The behavior observed in the previous specific degenerate-elliptic examples occurs also

in different situations. Let us consider in R3 the two vector fields

(5) X1 = ∂x1 + b1(x)∂t, X2 = ∂x2 + b2(x)∂t,

where b = (b1, b2) : U0 ⊆ R2 −→ R2 is smooth, defined in an open neighborhood U0 of

(0, 0), and such that b(0, 0) = (0, 0). Suppose that

(6) [X1, X2](0) = b2
x1

(0, 0)− b1
x2

(0, 0) 6= 0.

We want to investigate the operator

X2
1 +X2

2 = ∆x + 2b1(x)∂2
x1t

+ 2b2(x)∂2
x2t

+
(
(b1(x))2 + (b2(x))2

)
∂2
tt + div(b)∂t.
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Since b(0) = 0, the positive t-direction is characteristic at 0. To study the Hopf property,

let us define the following polynomial of degree 3

Fb(x) =
1

2
〈J sb(0)x, x〉+

1

6

(
b1
x1,x1

(0)x3
1 + 3b1

x1,x2
(0)x2

1x2 + 3b2
x1,x2

(0)x1x
2
2 + b2

x2,x2
(0)x3

2

)
,

where J sb(0) is the symmetric part of the Jacobian matrix of b at (0, 0). We can prove

the following

Theorem 3.1. Let X1, X2 the two vector fields in R3 defined in (5), satisfying (6). Sup-

pose Ω ⊂ R3 is a bounded open set with 0 ∈ ∂Ω, and with (0, 0, 1) as inner unit normal

at 0. Suppose also there exist an open neighborhood U of (0, 0, 0) and a positive constant

γ such that {
(x, t) ∈ U ⊂ R3 : t ≥ Fb(x) + γ ‖x‖4}r {(0, 0, 0)} ⊂ Ω.

Then the operator L = X2
1 +X2

2 satisfies the Hopf lemma in Ω at 0.

The comparison with the degree-3 polynomial Fb is suggested by the examples in the

first part of this section (and looking at the first order term div(b)∂t). In the case of the

Heisenberg vector fields, where b(x) = 1
2
(−x2, x1), we have Fb ≡ 0 and Theorem 3.1 gives

back the flatness condition of Birindelli and Cutŕı.

4. All around the boundary

Let us now go back to the study of some families of operators LQ as in (3), which

started in Section 2 and was interrupted with Remark 3.1.

Throughout the paper we have considered conditions on the behavior of ∂Ω around a

characteristic point. We would like to exploit here that analysis in order to construct

bounded open sets Ω in which our operators satisfy the Hopf lemma at every boundary

point. It is not difficult to convince ourselves that this is not possible for operators like

∂2
xx in R2 or ∆x±∂t in RN+1. Nonetheless it is possible for some families of operators LQ,

and it is possible in a uniform way with respect to uniformly positive definite matrices Q.

In the sets

B2
r0

(ξ0, τ0) = (ξ0, τ0) ◦
{

(x, t) ∈ Rm × Rn : ‖x‖4 + ‖t‖2 < r4
}
⊂ RN
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every operator LQ =
∑m

i,j=1 qi,j(x, t)XiXj (with Xi = ∂xi + 1
2

∑n
k=1(Bkx)i∂tk as in (4))

satisfies the Hopf lemma at every boundary point of B2
r0

(ξ0, τ0). This holds true for any

symmetric uniformly positive definite matrix Q(x, t). As a matter of fact, the character-

istic points of ∂B2
r0

(ξ0, τ0) are just the ones of the form (ξ0, τ) (with ‖τ − τ0‖ = r2
0) and

the barrier functions constructed in [30] are actual LQ-barrier functions in B2
r0

(ξ0, τ0) at

those points.

On the other hand, we have seen in Remark 3.1 that, for the vector fields X1 = ∂x and

X2 = x∂t in R2, the operators LQ may not satisfy the Hopf lemma in the homogeneous

ball {(x, t) ∈ R2 : x4 + t2 < 1}. We have to change this set accordingly to what we have

showed in Section 3. To this aim, let us fix Λ ≥ λ > 0 and define the following bounded

open set

BΛ
λ

=

{
(x, t) ∈ R2 : x4 − 1

2

(
Λ

λ
− 1

)
x2 + t2 < 1

}
⊂ R2.

We can prove the following

Proposition 4.1. For any 2× 2 symmetric matrix Q(x, t) such that λI2 ≤ Q ≤ ΛI2, the

operator LQ =
∑2

i,j=1 qi,j(x, t)XiXj satisfies the Hopf lemma in BΛ
λ

at any point of its

boundary.

We would like to stress that, in the case Λ = λ, LQ is forced to be λ(∂2
xx + x2∂2

tt): the

set BΛ
λ

coincides with the homogeneous ball {x4 + t2 < 1} and we recover the condition

in [23, 25].
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[8] G. Giraud. Généralisation des problèmes sur les opérations du type elliptique. Bull. Sci. Math., 56

(1932) 316-352.
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