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Abstract. In this paper we consider quasilinear elliptic systems with p, q-growth. We

discuss some aspects of the theory of regularity for systems and we state a local bound-

edness result for weak solutions, obtained in collaboration with P. Marcellini. Moreover,

a new boundedness result is proved under weaker assumptions on the coefficients.

Sunto. In questo articolo consideriamo sistemi ellittici quasi lineari con crescita p, q.

Illustriamo alcuni aspetti della teoria della regolarità per i sistemi ed enunciamo un

risultato di limitatezza locale per soluzioni deboli, ottenuto in collaborazione con P.

Marcellini. Inoltre, un nuovo risultato di limitatezza è dimostrato con ipotesi più deboli

sui coefficienti.
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1. Introduction

It is well known that many mathematical models of physical phenomena take forms of

partial differential equations or systems. As particular cases we have the Laplace Equation

∆u = 0 and the Heat Equation Dtu = ∆u.
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A partial differential system is a collection of equations involving m functions, m > 1,

in n variables and their partial derivatives:

E(x, u(x), Du(x)) = 0 in Ω,

where E : Ω×Rm×Rnm → Rm, with Ω ⊂ Rn open set, and u : Ω→ Rm is a vector-valued

map.

In this note we consider elliptic systems in divergence form:

(1)
n∑
i=1

∂

∂xi
(Aαi (x, u,Du)) = Bα(x, u,Du) α = 1, . . . ,m,

with Aα : Ω×Rn×Rnm −→ Rn, Bα : Ω×Rn×Rnm −→ R and Ω ⊂ Rn is an open, bounded

set. We observe that a significant case of system (1) is the Euler-Lagrange system of a

variational integral. Indeed, if we consider the functional

I(u) :=

∫
Ω

f (x, u(x), Du(x)) dx

with f : Ω × Rm × Rnm → R smooth enough, f = f(x, s, ξ), then a minimizer u of I

satisfies the Euler-Lagrange system; i.e.,

n∑
i=1

∂

∂xi

(
fξαi (x, u(x), Du(x))

)
= fsα (x, u(x), Du(x)) α = 1, . . . ,m.

Concerning system (1), the main problems are the proof of the existence in a given

(and suitable) class of functions and under suitable boundary conditions, and the study

of the regularity of the solutions.

More definitions of “weak” solutions to (1) can be given. Roughly, a “weak” solution

of (1) is a function u in a suitable Sobolev space, such that for all the test functions ϕ in

a suitable class, we have∑
α,i

∫
Ω

Aαi (x, u,Du)ϕαxi(x) dx+
∑
α

∫
Ω

Bα(x, u,Du)ϕα(x) dx = 0.

Of course, to have well defined integrals, what is required is that the “pairing” is satisfied,

e.g. A(x, u,Du), B(x, u,Du) ∈ Lp requires ϕ ∈ W 1,p′ , with 1
p

+ 1
p′

= 1. The choice of a

Sobolev space, rather than others, can affect the existence, the uniqueness or the regularity

of the solutions.
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Serrin in [51] provides an example of a second order elliptic equation with two solutions:

due to standard results, there exists a unique solution in W 1,2, but, on the other hand,

the author also exhibits another, and explicit, solution belonging to W 1,1(Ω) \W 1,2(Ω).

With this example the author shows that the well-known properties of local boundedness,

uniqueness for the Dirichlet problem, etc., cannot, in general, be extended from p = 2 to

1 ≤ p < 2.

Proving the existence of weak solutions is simpler than proving the existence of classical

ones, but, as a consequence, the proof of regularity results becomes crucial: it is enough

to note that two of the Hilbert’s celebrated 23 problems at the International Congress of

Mathematicians in Paris in 1900 are devoted to this:

• Hilbert’s 19th Problem: Are the solutions of regular variational problems always

analytic?

• Hilbert’s 20th Problem: Is it not the case that every regular variational problem

has a solution, provided that certain assumptions on the boundary conditions are

satisfied, and provided also (if necessary) that the concept of solution be suitable

extended?

As we will see there are, among others, two aspects that have to be taken into account

when regularity is studied: the regularity of the solutions is strongly related to the inte-

grability properties of the coefficients and to the dimension m (m > 1 is “worse” than

m = 1).

In the next section we present some historical notes on the issue of the regularity of weak

solutions for systems, in Section 3 we introduce the p, q-growth conditions and Section 4 is

devoted to report a result obtained in collaboration with Marcellini in [11] (see Theorem

4.1 below) and to prove a new result (Theorem 4.2).

2. Historical notes

It is very difficult to cite and discuss all the many different contributions to the regu-

larity problem, therefore we confine our historical presentation to the fundamental results

only.
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One of the first results on the regularity problem for nonlinear equations is due to Bern-

stein [4] (C3-solutions of a nonlinear elliptic analytic second order equation in the plane

are analytic functions) and, further, some contributions for linear systems are given by

Caccioppoli [7], Douglis-Nirenberg [15], Morrey [44]. After these researches, no substan-

tial progress was made (except for the two dimensional case) until the regularity result for

elliptic equations by De Giorgi [12] in 1957. This celebrated theorem states that, given a

second order linear elliptic equation

n∑
i=1

∂

∂xi

(
n∑
j=1

aij (x) uxj

)
= 0,

with essentially bounded measurable coefficients aij satisfying

n∑
i,j=1

aij(x)ξiξj ≥ ν|ξ|2 ∀ξ ∈ Rn

for some ν > 0, then the W 1,2-weak solutions are Hölder continuous; i.e., there exists

an exponent α ∈ (0, 1) such that u ∈ C0,α
loc (Ω). This result is usually referred to as the

De Giorgi-Nash Theorem, since this result was proved independently, and with different

proofs, by Nash, too. The Nash paper [47], published in 1958, a year later than the De

Giorgi’s one, deals also with the parabolic equations. In his paper, Nash writes: “P.R.

Garabedian writes from London about a manuscript by Ennio De Giorgi containing such

a result”. It is worth remembering that later, in 1960, Moser in [46] extends the validity

of the Harnack inequality to the solutions of general linear equations in divergence form

and, from this, he obtains a different proof of the Hölder regularity.

The method used by De Giorgi is a very powerful one and it consists in three steps.

Indeed, given a weak solution u, the De Giorgi’s proof goes as follows:

(i) proof of Caccioppoli type inequalities: in particular, estimates of integrals of |Du|

with integrals of u on its super-(sub-)level sets,

(ii) proof of the local boundedness of u,

(iii) proof of the local Hölder continuity of u.

Thus, the proof of the local boundedness of u is, in the De Giorgi’s proof, preliminary to

further additional regularity.
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Significant generalizations of the De Giorgi result are given by Stampacchia, we recall

here [55] and [56], by Ladyzhenskaya and Ural’tseva in some papers and in the fundamental

and celebrated book [30], by Serrin in two papers in 1964 and 1965 [52], [53] where a

complete analysis of the nonlinear case is given. We also quote the contributions of

Giaquinta and Giusti that in some papers in the early 80’s, [22], [23], [24], generalized the

Hölder regularity results to the minimizers of non-differentiable integral functionals with

integrands satisfying the following growth conditions:

|Du|p ≤ f(x, u,Du) ≤ c(1 + |Du|)p, p > 1.

None of the proofs of the De Giorgi’s result could be extended to cover the case of systems.

At last De Giorgi himself, in an article published in 1968 [13], exhibits a counterexample

of a second order linear elliptic system having a W 1,2(Ω,Rn)-weak solution, which is not

only discontinuous, but even locally unbounded. The example is the following:

n∑
i=1

∂

∂xi

(
n∑

j,β=1

aαβij (x)uβxj

)
= 0, α = 1, ..., n,

with

aαβij (x) = δijδαβ +

(
(n− 2)δiα +

xαxi
|x|2

)(
(n− 2)δjβ +

xβxj
|x|2

)
.

The function

u(x) =
x

|x|γ
with γ =

n

2

(
1− 1√

4(n− 1)2 + 1

)
> 1

is a weak solution in W 1,2(B1(0)) (and a solution in a classical sense in B1(0) \ {0}), but

it is not continuous, and even not locally bounded, since the solution has a singularity at

x = 0.

In matter of boundedness of solutions, we recall another classical counterexample in

Giusti and Miranda’s paper [26]. This article appeared immediately after De Giorgi’s one,

as one notices by the publication year (1968). Again, a quite simple system is considered,

(now with bounded coefficients aαβij (u) having analytic dependence on the solution u) and

a bounded, but discontinuous, solution of this system is exhibited. What this example

suggests is that there is a gap between local boundedness and (Hölder-)continuity. Since

then a number of different counterexamples were exhibited during the late ’60s, and even



20 GIOVANNI CUPINI AND ELVIRA MASCOLO

later: additional proofs that the regularity for systems is a delicate issue. We recall, among

the most famous contributions, those by Maz’ja [40], Nečas [48] (Lipschitz, but not C1

minimizers of integral functionals), Sveràk-Yan [57], [58], with examples of not Lipschitz

minimizers of smooth uniformly convex functional and of an unbounded minimizer for

n = 5, see also the recent paper [43] by Mooney-Savin for an example in lower dimension.

We recall also, for the nonlinear case with different growth assumption and structure

conditions, the papers by Freshe [17], [18], [19] and Hildebrandt-Widman [27] (bounded,

discontinuous weak solutions).

By this brief discussion on the counterexamples we conclude that weak solutions to

nonlinear elliptic systems or vector valued minimizers of regular integrals in general may

be irregular. Moreover we observe that the adaptation of the methods from the theory

of equations to systems is by no means obvious. For instance, notice that the De Giorgi

method based on the truncation of the solution, now a usual trick to get regularity results,

is delicate in the vectorial case: in the area of truncation the gradient is not vanishing (as

it does in the scalar case) and can interfere, in a bad way, with the leading part.

Therefore, motivated by these counterexamples, we find in the mathematical literature

at least two directions of research in regularity of generalized solutions of elliptic systems:

• partial regularity : i.e., regularity in an open set Ω0 ⊆ Ω, meas(Ω \ Ω0) = 0,

• regularity in the interior of Ω, when it is possible, under suitable structure as-

sumptions and/or assuming apriori some regularity (e.g. the local boundedness).

Roughly, a typical condition that forces the regularity is the dependence of the opera-

tor/functional on the modulus of the gradient. For instance, let us consider the functional

of the Calculus of Variations

F(u) =

∫
Ω

f(Du) dx, u : Ω→ Rm, m > 1.

In this case one expects a partial regularity result; if, instead, the functional is of Uhlenbeck

type

F(u) =

∫
Ω

f(|Du|) dx, u : Ω→ Rm, m > 1,
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one expects everywhere regularity. The counterpart of this last functional in the PDE

setting is the system

n∑
i=1

∂

∂xi

(
h(|Du|)uαxi

)
= 0 α = 1, . . . ,m.

The pioneering result of everywhere regularity in dependence on the modulus of Du were

proved by Uhlenbeck [60]. Uhlenbeck considered systems of the form

div(|Du|p−2Du) = 0

corresponding to the functional

F(u) =

∫
|Du|p dx,

with p ≥ 2 and proved an everywhere regularity result: u ∈ C1,α. Further contributions

for the equations are due to Evans [16], Di Benedetto [14], Lewis [33] and, for more general

non linear systems, to Tolksdorf [59], Giaquinta-Modica [25] and, for the sub-quadratic

case 1 < p < 2, Acerbi-Fusco [1]. We recall also some recent results by Buĺıček-Frehse [6],

which prove the Hölder continuity for quite general structured systems.

We observe that there are also some Hölder continuity results for bounded solutions of

quasilinear systems fulfilling the so-called controllable growth conditions and fixing among

the several constants involved certain relations. More precisely, let us consider the system

with principal part given by a diagonal matrix:

n∑
i=1

∂

∂xi

(
n∑
j=1

aij (x, u,Du) uαxj

)
= Bα(x, u(x), Du(x)), α = 1, . . . ,m

with 0 < λ ≤ µ such that

λ|ζ|2 ≤
n∑

i,j=1

aij(x, u, ξ)ζiζj ≤ µ|ζ|2 ∀ζ ∈ Rn,

and assume that there exist a, b ≥ 0 such that

(2) |B(x, u(x), ξ)| ≤ a|ξ|2 + b ∀ξ ∈ Rn×m.

Hildebrandt and Widman, see [27] and [28], prove that the bound a < λ/‖u‖L∞ (n = 2)

and a < λ/2‖u‖L∞ (n > 2) are sufficient conditions to the Hölder continuity of bounded
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solutions and, by means of an adaptation of Frehse’s counterexample, that the bound on

a is optimal for n = 2. A similar result has been proved by Caffarelli in [8] with a different

and geometric approach. His main idea is that the modulus of a solution is a supersolution

of an associated linear elliptic equation and that it satisfies the weak Harnack inequality.

For what concerns the proof of the local boundedness of the solutions to elliptic systems

there are not so many contributions. The result for linear elliptic systems

n∑
i=1

∂

∂xi

(
n∑
j=1

aij (x) uαxj +
m∑
β=1

bαβi (x) uβ + fαi (x)

)
+

+
n∑
i=1

m∑
β=1

cαβi (x) uβxi +
m∑
β=1

dαβ (x) uβ = fα (x) α = 1, . . . ,m,(3)

aij , b
αβ
i , cαβi , dαβ bounded measurable coefficients and given functions fαi , f

α, is in the

book of Ladyzhenskaya and Ural’tseva, 1968 [30]. We stress that the leading part of the

operator above,
∑

i
∂
∂xi

(∑
j aij (x) uαxj

)
, is far less general than the operator of the De

Giorgi counterexample,
∑

i
∂
∂xi

(∑
j,β a

αβ
ij (x) uβxj

)
.

In 1982 Meier, in his Ph.D. thesis, with supervisor Hildebrandt, and in a subsequent

paper [41], studied the boundedness (and some integrability properties) of solutions to

quasilinear elliptic systems:

div (Aα(x, u,Du)) = Bα(x, u,Du) α = 1, ...m

under the following p-growth conditions (p > 1):

•
∑

αA
α(x, u, ξ) · ξα ≥ |ξ|p − b|u|p − c,

• |Aα(x, u, ξ)| ≤ C(|ξ|p−1 + |u|p−1 + 1),

• |Bα(x, u, ξ)| ≤ C(|ξ|p−1 + |u|p−1 + 1).

The strategy of Meier’s proof consists in a nontrivial generalization of that of Serrin [52],

[53] for a single equation. The boundedness is obtained through the following pointwise

crucial assumption for the so-called indicator function, that is, in a simplified and slightly

more restrictive form,

IA(x, u,Du) :=
∑
α,β,i

Aαi (x, u,Du)uβxi
uαuβ

|u|2
≥ 0.
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The linear case considered by Ladyzhenskaya and Ural’tseva is included, and also the

more general case

n∑
i=1

∂

∂xi

(
n∑
j=1

aij (x, u,Du) uαxj

)
= 0,

if aij is positive semidefinite, because

IA(x, u,Du) =
∑
α,β,i

(
n∑
j=1

aij(x, u,Du)uαxj

)
uβxi

uαuβ

|u|2

=
n∑

i,j=1

aij(x, u,Du)

|u|2

(∑
α

uαuαxi

)(∑
α

uαuαxj

)
≥ 0.

We here recall also the geometric approach by Landes [31], [32] and an extension of the

Meier’s result due to Krömer [29].

To be precise, Meier deals with a weaker growth assumption on B, since the growth of B

can be a natural growth (|Bα(x, u, ξ)| ∼ |ξ|p), instead than a controlled one (|Bα(x, u, ξ)| ∼

|ξ|p−1) as written above, but in case of natural growth this condition is not enough and

has to be coupled with the one-sided condition:

(4)
∑
α

uαBα(x, u, ξ) ≥ −
{

(1− θ)|ξ|p +N |u|
(
c|ξ|p−1 + d|u|p−1 + f

)}
with θ ∈ (0, 1], c, d, f > 0. Of course, the controlled growth implies this latter condition.

As we have seen above, the growth of B is crucial also for the regularity of bounded weak

solutions: in the case of natural growth without assuming (4), locally bounded weak

solutions of systems with natural growth may be irregular as the examples by Frehse [18]

and Hildebrandt-Widman [27] show.

For more details on the hystorical development of the regularity theory for systems we

refer to the book by Giaquinta [20] and to the survey article by Mingione [42].

3. Regularity for elliptic systems with p, q-growth

In this section, we discuss a different aspect of how the growth conditions interact with

the regularity. The systems may not satisfy standard p-growth conditions; for instance
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this happens if we consider the Euler-Lagrange system of functionals

I(u) =

∫
Ω

f (x, u(x), Du(x)) dx,

with functions f having a p, q-growth; i.e.,

|ξ|p ≤ f(x, u, ξ) ≤ (1 + |ξ|)q, 1 ≤ p < q.

Examples of energy densities of integral functionals with p, q-growth are the following:

• small perturbation of polynomial growth

f(ξ) = |ξ|p logα(1 + |ξ|), ξ ∈ Rnm, p ≥ 1, α > 0;

• double phase functionals

f(x, ξ) = |ξ|p + a(x)|ξ|q, 0 ≤ a(x)

(model for the study of the strongly anisotropic materials Zhikov [61], [62] for

more detail and references);

• anisotropic growth

f(ξ) =
n∑
i=1

|ξi|pi

(here ξi, i = 1, . . . , n, is the i-th column of the m×n matrix ξ = (ξαj ), j = 1, . . . , n,

α = 1, . . . ,m);

• variable exponents

f(ξ) = |ξ|p(x), f(ξ) = [h(|ξ|)]p(x), p ≤ p(x) ≤ q.

(model proposed in 1996 in the theory of the electrorheological fluids by Rajagopal-

Růžička [49], [50]; for the study of the image denoising by Chen et al. [9] and,

recently, in theory of the growth of heterogeneous sandpiles by Bocea et al. [5]);

• anisotropic variable exponents

f(ξ) =
n∑
i=1

|ξ|pi(x), p ≤ pi(x) ≤ q.

We also mention an example of non-polynomial growth:
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• exponential growth

f(x, ξ) ∼ e |ξ|
p(x)

(model proposed in the gas reaction by Aris [2] and in the combustion theory by

Mosely [45]).

An important example of an integral functional with p, q-growth comes from the elasticity

theory. Ball [3] considers a deformation of an elastic body that occupies a bounded domain

Ω ⊂ Rn. If u : Ω → Rn is the displacement, then the total energy can be represented

by an integral functional
∫

Ω
f(Du) dx. One of the simplest, but typical, examples has

integrand

f(Du) = g(Du) + h(detDu)

where g, h are non-negative convex functions, that satisfy the growth conditions:

g(ξ) ≥ c|ξ|p lim
t→+∞

h(t) = +∞

If g(ξ) ∼ |ξ|p and h(t) ∼ t then

|ξ|p . f(ξ) . (1 + |ξ|)n.

An example of system of PDE with p, q-growth is the following. Consider the sum of a

p-Laplacian and a degenerate q-Laplacian:

n∑
i=1

∂

∂xi

(
|Du|p−2uαxi +m(x)|Du|q−2uαxi

)
= 0 α = 1, . . . ,m

with q > p and 0 ≤ m(x) ≤M (and m = 0 in a set of positive measure). Denoting

Aαi (x,Du) := |Du|p−2uαxi +m(x)|Du|q−2uαxi

we have

|Du|p ≤
∑
i,α

Aαi (x,Du)uαxi ≤ (1 +M)(1 + |Du|)q.

The first regularity result under the p, q-growth condition was proved by Marcellini [35],

see also his papers [36] ,[37], [38], [39]. It is important to remark that two years before the

first regularity result under p, q-growth ([35]) an example by Giaquinta [21] and Marcellini
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[34] suggested that a bound on the gap between p and q is a necessary condition to the

local regularity. For instance, the functional∫
B1(0)

(
n−1∑
i=1

|uxi |2 + c|uxn|q
)
dx, n > 3

has an unbounded minimizer if q
2
> n−1

n−3
, or, equivalently, if q > p∗. Here p denotes the

harmonic mean of the n-vector (2, . . . , 2, q) and p∗ is its Sobolev exponent. We recall that

the harmonic mean p of (p1, . . . , pn) and p∗ are defined as follows:

(5)
1

p
:=

1

n

n∑
i=1

1

pi
, p∗ :=

 np
n−p if p < n

any µ > p if p ≥ n.

What is now well known is that, in general, to have the regularity of minimizers/solutions

the gap between p and q must be not too large; in many cases this relation is expressed

by an inequality of the type q ≤ c(n)p with c(n)→ 1+ as n goes to infinity.

In the last years, there are many contributions on this subject; also in this case, for

more details and references we refer to [42].

4. Local boundedness for elliptic systems with p, q-growth

In Cupini-Marcellini-Mascolo [11] we study the regularity for a particular class of

quasilinear systems, which includes the linear case (3) considered by Ladyzhenskaya and

Ural’tseva. Precisely, our systems are in the form

(6)
n∑
i=1

∂

∂xi

(
n∑
j=1

aij (x, u,Du) uαxj + bαi (x, u,Du)

)
= fα (x, u,Du) , ∀α = 1, . . . ,m.

Here, for semplicity, we consider the following simplified form

(7)
n∑
i=1

∂

∂xi

(
n∑
j=1

aij (x, u,Du) uαxj

)
= 0, α = 1, . . . ,m.

where aij : Ω×Rm ×Rm×n → R are Carathéodory functions, i, j = 1, . . . , n. Notice that

this class (7) includes the general single equations in divergence form if m = 1. In fact
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any equation
n∑
i=1

∂

∂xi
(ai (x, u,Du)) = 0, ai(x, u, ·) ∈ C1,

can be written as

n∑
i=1

∂

∂xi

(
n∑
j=1

aij(x, u,Du)uxj + ai(x, u, 0)

)
= 0,

(the presence of the term ai(x, u, 0) is not difficult to manage, since it is a lower order

term) as the following computation shows:

ai (x, u,Du)− ai (x, u, 0) =

∫ 1

0

d

dt
ai (x, u, tDu) dt

=

∫ 1

0

n∑
j=1

∂ai
∂ξj

(x, u, tDu)uxjdt

and it suffices to denote

aij(x, u,Du) :=

∫ 1

0

n∑
j=1

∂ai
∂ξj

(x, u, tDu) dt

to conclude.

We assume that the following p-ellipticity condition holds

(8)
n∑

i,j=1

m∑
α=1

aij(x, u, ξ)ζiζj ≥ λ
n∑
i=1

ζ2
i |ξi|p−2 ∀ξ ∈ Rnm, ∀ζ ∈ Rn

together with the q-growth condition from above: there exists q ≥ p > 1, and Λ > 0 such

that

(9)

∣∣∣∣∣∑
j

aij (x, u, ξ) ξαj

∣∣∣∣∣ ≤ Λ(|ξ|q−1 + 1) ∀ξ ∈ Rnm, ∀ i, α.

To be more explicit and precise, what we really use is not (8) itself, but two consequences

implied by it:

• (aij(x, u, ξ)) is a positive semidefinite matrix; i.e.,

(10)
n∑

i,j=1

aij(x, u, ξ)ζiζj ≥ 0 ∀ζ ∈ Rn,

for a.e. x, every u ∈ Rm and every ξ ∈ Rnm,
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• p-coercivity: there exists p > 1 and λ > 0 such that

(11)
m∑
α=1

n∑
i,j=1

aij(x, u, ξ)ξ
α
i ξ

α
j ≥ λ |ξ|p

Now, a vector-valued map u ∈ W 1,q
loc (Ω;Rm) is a weak solution of (7) if

(12)

∫
Ω

n∑
i,j=1

aij(x, u,Du)uαxj ϕ
α
xi

= 0, α = 1, . . . ,m

for all ϕ ∈ W 1,q(Ω;Rm) with suppϕ b Ω. We observe that the assumption u ∈

W 1,q
loc (Ω;Rm) gives a correct definition of weak solution since

n∑
j=1

aij(·, u,Du)uαxj ∈ L
q
q−1

loc (Ω), α = 1, . . . ,m.

Below, for the sake of simplicity, we denote a(x, u, ξ) the vector in Rnm

a(x, u, ξ) :=

(
n∑
j=1

aij(x, u, ξ)ξ
α
j

)
i=1,...,n; α=1,...,m

.

In [11] the following theorem is proved (Theorem 4.1).

Theorem 4.1. Let (8) and (9) hold, with 1 < p < q. Assume also that either

(13) 〈a(x, u, ξ)− a(x, u, η), ξ − η〉 ≥ 0 ∀ ξ, η ∈ Rn×m and, if p < n, q < p
n− 1

n− p
,

or there exists a Carathéodory function A : Ω×Rm×R+ → R+, t→ A(x, u, t)t increasing,

such that

(14)

aij(x, u, ξ) = A(x, u, |ξ|)δij ∀ i, j = 1, ..., n, ∀ ξ ∈ Rn×m and q < p∗ if p < n.

Then any weak solution u ∈ W 1,q
loc (Ω;Rm) to (7) is locally bounded. Moreover, for every

BR(x0) b Ω there exists a constant c > 0 and θ ≥ 1 such that

sup
BR/2(x0)

|u| ≤ c

{∫
BR(x0)

(|u|+ 1)p
∗
dx

} θ
p∗

.

Remark 4.1. In [11] we obtain also another result: indeed we prove that if the p-coercivity

(11) and the q-growth (9) are replaced by the corresponding anisotropic properties:
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•
m∑
α=1

n∑
i,j=1

aij(x, u, ξ)ξ
α
i ξ

α
j ≥M1

n∑
i=1

|ξi|pi, p1, ..., pn > 1

•

∣∣∣∣∣
n∑
j=1

aij (x, u, ξ) ξαj

∣∣∣∣∣ ≤M

{
n∑
j=1

|ξj|pj + 1

}1− 1
pi

∀i, α

then the following result holds: if max {p1, p2, . . . , pn} < p∗, where p∗ is the Sobolev ex-

ponent of the harmonic mean p of the vector (p1, . . . , pn), then the solutions are locally

bounded.

We now give a new result of local boundedness of solutions to (7). We stress that

now we get a result without the monotonicity assumption (13) or the dependence on the

modulus in the gradient variable, see (14). Of course, a stronger assumption on the

bound on q is needed to prove the regularity: p and q must be closer than before.

Theorem 4.2. Let (8) and (9) hold.

If 1 < p < q and q < pn+1
n

(if p < n), then any weak solution u ∈ W 1,q
loc (Ω;Rm) to (7)

is locally bounded. Moreover, for every BR(x0) b Ω there exist a constant c > 0 such that

sup
BR/2(x0)

|u| ≤ c

{∫
BR(x0)

(|u|+ 1)p
∗
dx

} 1+θ
p∗

,

with θ = q̃
p
q̃−p
p∗−q̃ , where q̃ := p

p+1−q .

Remark 4.2. Both in Theorem 4.1 and in Theorem 4.2 we prove the local boundedness of

a weak solution in W 1,q
loc (Ω;Rm). One may wonder if such a solution exists due to the lack

of coercivity in W 1,q (indeed the coercivity/ellipticity assumption involves the exponent p

and not q). In the recent paper written in colaboration with Leonetti [10] we prove an

existence result of weak solutions in W 1,q
loc (Ω;Rm).

Proof of Theorem 4.2. The scheme of the proof is similar to the proof of Theorem 4.1 in

[11]. We split the proof into steps. From now on, the constants, often denoted with the

letter c, may vary from line to line.

Step 1.
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Fix a ball BR0(x0) b Ω. Let us assume 0 < ρ < R ≤ R0 and let η ∈ C∞c (Ω) be a cut-off

function, satisfying the following assumptions:

(15) 0 ≤ η ≤ 1, η ≡ 1 in Bρ, supp η b BR, |Dη| ≤ 2

R− ρ
.

Let us approximate the identity function id : R+ → R+ with an increasing sequence of

C1 functions gk : R+ → R+, such that

(16)

gk(t) =

 0 for all t ∈ [0, 1
k+1

]

k for all t ≥ k,
0 ≤ g′k(t) ≤ 2 and g′k(t)t ≤ gk(t) +

2

k
in R+.

Notice that the last inequality can be assumed since the restriction of gk to the in-

terval
[

1
k+1

, k
]

can be seen as a smooth approximation of the linear funtion Gk(t) =

k(k+1)
k(k+1)−1

(
t− 1

k+1

)
, whose graph is the line of the plane connecting ( 1

k+1
, 0) and (k, k) and

Gk satisfies G′k(t)t ≤ Gk(t) + 1
k
. Fixed ν > 0, let Φk,ν : R+ → R+ be the increasing

function defined as

Φk,ν(t) := gk(t
pν).

By (16) we obtain

(17) (Φk,ν)
′(t)t ≤ pν

{
Φk,ν(t) +

2

k

}
≤ qν

{
Φk,ν(t) +

2

k

}
.

Finally, we define

(18) ϕk,ν(x) := Φk,ν(|u(x)|)u(x)ηq̃(x) for every x ∈ BR0 ,

with q̃ := p
p+1−q .

From now on, we write ϕk and Φk instead of ϕk,ν and Φk,ν . We claim that

ϕk ∈ W 1,q(BR0 ;Rm), supp ϕk b BR.

Indeed, Φk is in C1(R+), bounded, because ‖Φk‖L∞(R+) ≤ k, and with bounded derivative.

Precisely, if ak = (k + 1)−
1
pν and bk = k

1
pν , then

(Φk)
′(s) =

 0 if s ∈ R+ \ [ak, bk]

pνg′k(s
pν)spν−1 if s ∈ [ak, bk]



LOCAL REGULARITY FOR ELLIPTIC SYSTEMS WITH p,q-GROWTH 31

and

‖(Φk)
′‖L∞(R+) ≤ 2pν max

{
apν−1
k , bpν−1

k

}
<∞.

As a consequence, taking also into account that u ∈ W 1,q(BR0) we have that Φk(|u|)u is

in W 1,q(BR0) and the claim follows.

Step 2.

Using ϕk as a test function in (12) we get

(19)

I1 + I2 :=

∫
BR

n∑
i,j=1

m∑
α=1

aij(x, u,Du)uαxju
α
xi

Φk(|u|) ηq̃ dx

+

∫
BR

n∑
i,j=1

m∑
α,β=1

aij(x, u,Du)uαxju
α u

β

|u|
uβxi (Φk)

′(|u|) ηq̃ dx

=−q̃
∫
BR

n∑
i,j=1

m∑
α=1

aij(x, u,Du)uαxju
αηxiΦk(|u|) ηq̃−1 dx =: I3.

Now, we separately consider and estimate Ii, i = 1, 2, 3.

Estimate of I1: By (11)

(20) I1 ≥ λ

∫
BR

|Du|pΦk(|u|) ηq̃ dx.

Estimate of I2: By (10), with ζi =
∑m

α=1 u
α uαxi , we have that for a.e. x ∈ {|u| > 0}

n∑
i,j=1

m∑
α,β=1

aij(x, u,Du)uαxju
αuβ uβxi =

n∑
i,j=1

aij(x, u,Du)

{
m∑
α=1

uα uαxj

}{
m∑
α=1

uα uαxi

}
≥ 0.

Thus, since Φ′k ≥ 0 we have

I2 :=

∫
BR

n∑
i,j=1

m∑
α,β=1

aij(x, u,Du)uαxju
α u

β

|u|
uβxiΦ

′
k(|u|) ηq̃ dx ≥ 0.

Estimate of I3: By (9) we have

I3 := −q̃
∫
BR

n∑
i,j=1

m∑
α=1

aij(x, u,Du)uαxju
αηxiΦk(|u|) ηq̃−1 dx

≤ c(q̃,Λ)

∫
BR

ηq̃−1
(
|Du|q−1 + 1

)
|u|Φk(|u|)|Dη| dx

= c(q̃,Λ)

∫
BR

ηq̃−1|Du|q−1|u|Φk(|u|)|Dη| dx+ c(q̃,Λ)

∫
BR

ηq̃−1|u|Φk(|u|)|Dη| dx.(21)
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Notice that q̃ − 1 = q̃ q−1
p
> 0. Since q < p + 1, by the Young inequality with exponents

p
q−1

and p
p+1−q we have that for all ε > 0 there exists cε > 0 such that

(22) ηq̃−1|Du|q−1|u||Dη| =
(
ηq̃

q−1
p |Du|q−1

)
(|u||Dη|) ≤ εηq̃|Du|p + cε (|u||Dη|)

p
p+1−q .

Moreover, taking into account that 0 ≤ η ≤ 1 and p ≥ p+ 1− q,

(23) ηq̃−1|u||Dη| ≤ |u||Dη| ≤ 1 + |u||Dη| ≤ (1 + |u||Dη|)
p

p+1−q .

Collecting (21), (22) and (23) we have

I3 ≤ c(q̃,Λ)ε

∫
BR

|Du|pηq̃Φk(|u|) dx+ c̃(q̃,Λ, ε)

∫
BR

(1 + |u||Dη|)
p

p−q+1 Φk(|u|) dx.

Choosing ε = λ
2c(q̃,Λ)

and taking into account that

(1 + |u||Dη|)
p

p−q+1 ≤ c

(R− ρ)
p

p−q+1

(
1 + |u|

p
p−q+1

)
≤ 2c

(R− ρ)
p

p−q+1

[max{|u|, 1}]
p

p−q+1

with c possibly depending on diam(Ω), we have that the estimates of I1, I2 and I3 proved

above imply that there exists C > 0 such that∫
BR

|Du|pΦk(|u|)ηq̃ dx ≤
C

(R− ρ)
p

p−q+1

∫
BR

[max{|u|, 1}]
p

p−q+1 Φk(|u|) dx.

Since Φk(|u|)→ |u|pν as k goes to +∞, passing to the limit we obtain

(24)

∫
BR

|Du|p|u|pν ηq̃ dx ≤ C

(R− ρ)
p

p−q+1

∫
BR

[max{|u|, 1}]
p

p−q+1
+pν dx.

By q ≥ p we have q̃ ≥ p therefore ηq̃−p ≤ 1. Hence, using the above inequality,∫
BR

∣∣∣D [η q̃p (|u|ν+1 + 1
)]∣∣∣p dx

≤ c(q̃, p)

∫
BR

ηq̃−p|Dη|p
(
|u|ν+1 + 1

)p
dx+ c(ν + 1)p

∫
BR

ηq̃|u|pν |Du|p dx

≤ 2pc(q̃, p)

(R− ρ)p

∫
BR

[max{|u|, 1}]p+pν dx+
c(ν + 1)p

(R− ρ)
p

p−q+1

∫
BR

[max{|u|, 1}]
p

p−q+1
+pν dx,

that implies

(25)

∫
BR

∣∣∣D [η q̃p (|u|ν+1 + 1
)]∣∣∣p dx ≤ c(ν + 1)p

(R− ρ)
p

p−q+1

∫
BR

[max{|u|, 1}]
p

p−q+1
+pν dx.
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Notice that if p < n, the assumption q < pn+1
n

is equivalent to q̃ < p∗, (this last inequality

can be always assumed if p ≥ n choosing p∗ great enough), thus the Sobolev embedding

theorem implies that u ∈ Lq̃loc(Ω). By Hölder inequality,∫
BR

[max{|u|, 1}]q̃+pν dx =

∫
BR

[max{|u|, 1}]q̃−p[max{|u|, 1}]p(1+ν) dx

≤

{∫
BR0

[max{|u|, 1}]q̃
}1− p

q̃ {∫
BR

[max{|u|, 1}]q̃(ν+1)

} p
q̃

≤ c

{∫
BR0

[max{|u|, 1}]p∗
} q̃−p

p∗ {∫
BR

[max{|u|, 1}]q̃(ν+1)

} p
q̃

.

Therefore, (25) becomes∫
BR

∣∣∣D [η q̃p (|u|ν+1 + 1
)]∣∣∣p dx

≤ c(ν + 1)p

(R− ρ)q̃

{∫
BR0

[max{|u|, 1}]p∗
} q̃−p

p∗ {∫
BR

[max{|u|, 1}]q̃(ν+1)

} p
q̃

.(26)

By the classical Sobolev imbedding theorem,(∫
Bρ

(max{|u|, 1})p∗(ν+1) dx

) p
p∗

≤
(∫

BR

∣∣∣η q̃p (|u|ν+1 + 1
)∣∣∣p∗ dx) p

p∗

≤ c

∫
BR

∣∣∣D [η q̃p (|u|ν+1 + 1
)]∣∣∣p dx,

and (26) implies(∫
Bρ

[max{|u|, 1}]p∗(ν+1) dx

) 1
p∗

≤ c(ν + 1)

(R− ρ)
q̃
p

{∫
BR0

[max{|u|, 1}]p∗
} q̃−p

pp∗ {∫
BR

[max{|u|, 1}]q̃(ν+1)

} 1
q̃

.(27)

Step 3.

The inequality (27) allows to use the Moser’s iteration procedure, so obtaining that

max{|u|, 1} ∈ L∞loc and, therefore, u ∈ L∞loc. Since this is a standard argument, we

give only a sketch of the proof. Denote v(x) := max{|u(x)|, 1}. For all h ∈ N define
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νh = −1 +
(
p∗

q̃

)h
, ρh = R0/2 +R0/2

h+1 and Rh = R0/2 +R0/2
h. By (27), replacing ν, R

and ρ with νh, Rh and ρh, respectively, we have

(28) ‖v‖νh+1

Lq̃(νh+1+1)(BRh+1
)
≤ c ·

(
2p∗

q

)h
‖v‖

q̃−p
p

Lp∗ (BR0
)
‖v‖νh+1

Lq̃(νh+1)(BRh )

or, equivalently,

(29) ‖v‖
Lq̃(νh+1+1)(BRh+1

)
≤ c(

q̃
p∗ )

h

·
(

2p∗

q̃

)h( q̃
p∗ )

h

‖v‖
q̃−p
p ( q̃

p∗ )
h

Lp∗ (BR0
)
‖v‖Lq̃(νh+1)(BRh )

So, we have that v ∈ Lq̃(νh+1)(BRh) implies v ∈ Lq̃(νh+1+1)(BRh+1
).

Taking into account that q̃(ν1 + 1) = p∗ and that q̃−p
p

∑∞
h=1

(
q̃
p∗

)h
= q̃

p
q̃−p
p∗−q̃ , an iterated

use of the above inequality implies the existence of a positive constant c such that

‖v‖L∞(BR0/2
(x0)) ≤ c ‖v‖

q̃
p
q̃−p
p∗−q̃+1

Lp∗ (BR0
(x0))

.

The claim follows. �

We remark that the previous proof holds also for the more general system (6) under

suitable growth assumptions on bαi and fα.

We like to conclude this paper with a citation by J. Serrin in [54] about the issue of

regularity:

“.....what in 1900 was a shy branch has blossomed in the twentieth century and devel-

oped in ways that Hilbert could never have imagined and now covers such a vast area of

researches that just a few years ago would have seemed amazing.”
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[58] V. Sveràk, X. Yan. Non-Lipschitz minimizers of smooth uniformly convex functionals Proc. Natl.

Acad. Sci. USA 99 (24) (2002) 15269-15276.

[59] P. Tolksdorf. Everywhere-regularity for some quasilinear systems with a lack of ellipticity. Ann. Mat.

Pura Appl. 134 (1983) 241-266.

[60] K. Uhlenbeck. Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977) 219-240.

[61] V.V. Zhikov. Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad.

Nauk SSSR Ser. Mat., 50 (1986) 675-710.
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