
A LIOUVILLE THEOREM FOR NONLOCAL EQUATIONS
IN THE HEISENBERG GROUP

ELEONORA CINTI

Abstract. We establish a Liouville-type theorem for a subcritical nonlinear problem,

involving a fractional power of the sub-Laplacian in the Heisenberg group. To prove our

result we will use the local realization of fractional CR covariant operators, which can

be constructed as the Dirichlet-to-Neumann operator of a degenerate elliptic equation

in the spirit of Caffarelli and Silvestre [8], as established in [14]. The main tools in our

proof are the CR inversion and the moving plane method, applied to the solution of the

lifted problem in the half-space Hn × R+.
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1. Introduction

In these notes we establish a Liouville-type result for the following nonlinear and non-

local problem in the Heisenberg group:

(1.1) P 1
2
u = up in Hn.

Here P 1
2

denotes a CR covariant operator of order 1/2 in Hn, whose principal symbols

agree with the pure fractional power 1/2 of the Heisenberg Laplacian −∆H (see (2.1)

for the precise definition of −∆H). In [14] the authors study CR covariant operators of

fractional orders on orientable and strictly pseudoconvex CR manifolds. In this context,

the Heisenberg group Hn plays the same role as Rn in conformal geometry, see also [24].
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Given a Kähler-Einstein manifold X , CR covariant operators of fractional order γ are

pseudodifferential operators whose principal symbol agrees with the pure fractional powers

of the CR sub-Laplacian on the boundaryM = ∂X . They can be defined using scattering

theory, as done in [12, 20, 19, 18].

One of the main results in [14] establishes that it is possible to characterize fractional

CR covariant operators on some CR manifold M = ∂X , as the Dirichlet-to-Neumann

map of a degenerate elliptic equation in the interior of X as in [8].

To construct fractional CR covariant operators in the specific case of the Heisenberg

group, Hn is identified with the boundary of the Siegel domain in R2n+2 (see Section 2 for

the precise definition) and it is crucial to use its underlying complex hyperbolic structure

(see [14]).

Since it will be of utmost importance in the sequel, we recall here the extension result

proven in [14].

Theorem 1.1 (see Theorem 1.1 in [14]). Let γ ∈ (0, 1), a = 1−2γ. For each u ∈ C∞(Hn),

there exists a unique solution U for the extension problem

(1.2)


∂2U

∂λ2
+
a

λ

∂U

∂λ
+ λ2∂

2U

∂t2
+

1

2
∆HU = 0 in Ĥn

+ := Hn × R+,

U = u on Hn × {λ = 0}.

Moreover,

Pγu = −cγ lim
λ→0

λa
∂U

∂λ
,

where cγ is a constant depending only on γ which precise value is given by

cγ = − Γ(γ)

γΓ(−γ)
· 22γ−1.

Observe that, differently from the extension result established in [13], here we have the

additional term λ2 ∂2U
∂t2

which appears when one considers CR fractional sub-Laplacian.

When a = 1/2 the equation in (1.2) satisfied by U becomes:

(1.3)
∂2U

∂λ2
+ λ2∂

2U

∂t2
+

1

2
∆HU = 0,

and we have

P 1
2
u = −c 1

2
lim
λ→0

∂U

∂λ
.



A LIOUVILLE THEOREM FOR NONLOCAL EQUATIONS IN THE HEISENBERG GROUP 129

Replacing λ by
√

2λ in (1.3), we will consider the operator

L = ∆H +
∂2

∂λ2
+ 4λ2 ∂

2

∂t2
.(1.4)

Our Liouville-type theorem is the analogue, for the fractional operator P 1
2
, of a result

contained in [4], for the sublaplacian ∆H. In [4], the authors establish a nonexistence

result for a class of positive solution of the equation

(1.5) −∆Hu = up,

for p subcritical (i.e. 0 < p < Q+2
Q−2

, where Q = 2n+2 denotes the homogeneous dimension

of Hn). The technique they used is based on the moving plane method (which goes

back to Alexandrov [1] and Serrin [25]), adapted to the Heisenberg group setting. This

method requires two basic tools: the maximum principle and invariance under reflection

with respect to a hyperplane. Since the operator −∆H is not invariant under the usual

reflection, in [4] a new reflection, called H-reflection, was introduced. Since it will be

important in the sequel, we recall here the definition of H-reflection.

Definition 1.2. For any ξ = (x, y, t) ∈ Hn, we consider the plane Tµ := {ξ ∈ Hn : t =

µ}. We define

ξµ := (y, x, 2µ− t),

to be the H-reflection of ξ with respect to the plane Tµ.

Due to the use of this reflection, the proof of the nonexistence result in [4] requires the

solution u of (1.5) to be cylindrical, that is, u(x, y, t) = u(r0, t) must depend only on r0

and t where r0 = (|x|2 + |y|2)
1
2 .

We can now state our main result, which is the analogue for the operator P 1
2

of the

Liouville result contained in [4].

Theorem 1.3. Let 0 < p < Q+1
Q−1

, where Q = 2n+ 2 is the homogeneous dimension of Hn.

Then there exists no cylindrical solution u ∈ C2(Hn) of

(1.6)

P 1
2
u = up in Hn,

u > 0 in Hn.
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Using the local formulation (1.2) established in [14], the above theorem will follow as

a corollary of the following Liouville-type result for a nonlinear Neumann problem in the

half-space Hn × R+.

Theorem 1.4. Let 0 < p < Q+1
Q−1

and let U ∈ C2(Hn×R+)∩C1(Hn × R+) be a nonnegative

solution of

(1.7)


∂2U

∂λ2
+ 4λ2∂

2U

∂t2
+ ∆HU = 0 in Hn × R+,

−∂U
∂λ

= Up on Hn × {λ = 0}.

Suppose that U(x, y, t, λ) = U(r0, t, λ), that is U depends only on r0, t, λ, where r0 =

(|x|2 + |y|2)
1
2 . Then U ≡ 0.

In the Euclidean case, classical nonexistence results for subcritical nonlinear problems

in the all space Rn are contained in [17] and [9]. Analogue results for nonlinear Neumann

problems in the half-space Rn
+ where established in [22, 23], using the methods of moving

planes and moving spheres.

In the Heisenberg group setting there are several papers concerning nonexistence results

for problem (1.5). In [15] some nonexistence results for positive solutions of (1.5) when p is

subcritical were established, under some integrability conditions on u and ∇u. In [21, 27]

similar nonexistence results for positive solutions of (1.5) in the half-space are established

for the critical exponent p = Q+2
Q−2

. In [5], a Liouville-type result for solution of (1.5) is

proved without requiring any decay condition on u, but only for 0 < p < Q
Q−2

. In [4] the

authors extend this last result to any 0 < p < Q+2
Q−2

but only in the class of cylindrical

solution. A last more recent result in this context was proven in [28], who established

that there are no positive solution of (1.5) for 0 < p < Q(Q+2)
(Q−1)2

. This result uses a different

technique, based on the vector field method, and improves the results contained in [15]

and [5], since it does not require any decay on the solution u and it improves the exponent

p. Nevertheless it seems that it does not allow to reach the optimal exponent Q+2
Q−2

(observe

that Q
Q−2

< Q(Q+2)
(Q−1)2

< Q+2
Q−2

).

In this note we aim to establish a first Liouville-type result for a CR fractional power

of −∆H; this is, to our knowledge, the first nonexistence result in this fractional setting.
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Let us comment now the basic tools in the proof of our main result. Following [4], in

order to get a nonexistence result, we combine the method of moving planes with the CR

inversion of the solution u.

The CR inversion was introduced in [24], and it is the analogue of the Kelvin transform,

in the Heisenberg group context. In Section 3 we will give the precise definition of CR

inversion and we will show which problem is satisfied by the CR inversion of a solution of

(1.7).

As said before, the moving plane method is based on several version of the maximum

principles. More precisely we will need to prove that our operator satisfies a weak maxi-

mum principle and two versions of the Hopf Lemma (see Propositions 4.3 and 4.6).

The note is organized as follows:

• in Section 2 we recall some basic facts on the Heisenberg group and we will intro-

duce the fractional CR operator P 1
2
;

• in Section 3 we will introduce the CR inversion of a function u and state a lemma

concerning the CR inversion of a solution of our problem (1.7);

• in Section 4 we establish a maximum principles and Hopf Lemma for our operator,

which will be basic tools in the method of moving plane;

• in Section 5 we will prove our main result (Theorem 1.4).

2. Preliminary facts on the Heisenberg group

In this section we recall some basic notions and properties concerning the Heisenberg

group (see Chapter 3 in [6] and Chapter XII in [26]).

We will denote the points in Hn using the notation ξ = (x, y, t) = (x1, ..., xn, y1, ..., yn, t) ∈

Rn × Rn × R. The Heisenberg group Hn is the space R2n+1 endowed with the group law

◦ defined in the following way:

ξ̂ ◦ ξ := (x̂+ x, ŷ + y, t̂+ t+ 2
n∑
j=1

(xj ŷj − yjx̂j)).

The natural dilation of the group is given by δ`(ξ) := (`x, `y, `2t), and it satisfies δ`(ξ̂◦ξ) =

δ`(ξ̂) ◦ δ`(ξ).
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In Hn we will consider the gauge norm defined as

|ξ|H :=
[( n∑

i=1

(x2
i + y2

i )
)2

+ t2
] 1

4 ,

which is homogeneous of degree one with respect to δ`. Using this norm, one can define

the distance between two points in the natural way:

dH(ξ̂, ξ) = |ξ̂−1 ◦ ξ|H,

where ξ̂−1 denotes the inverse of ξ̂ with respect to the group action. We denote the ball

associated to the gauge distance by

BH(ξ0, R) := {ξ ∈ Hn : dH(ξ, ξ0) < R}.

Denoting by |A| the Lebesgue measure of the set A, we have that

|BH(ξ0, R)| = |BH(0, R)| = RQ|BH(0, 1)|.

Here Q = 2n+ 2 denotes the homogeneous dimension of Hn.

For every j = 1, · · · , n, we denote by Xj, Yj, and T the following vector fields:

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

∂

∂t
.

They form a basis of the Lie Algebra of left invariant vector fields. Moreover, an easy

computions shows that [Xk, Yj] = −4δkjT . The Heisenberg gradient of a function f is

given by

∇Hf = (X1f, · · · , Xnf, Y1f, · · · , Ynf).

Finally, we define the sublaplacian as

(2.1) ∆H :=
n∑
j=1

(X2
j + Y 2

j ).

It can be written also in the form ∆H = div(A∇T ), where A = akj is the (2n+1)×(2n+1)

symmetric matrix given by akj = δkj for k, j = 1, ..., 2n, aj(2n+1) = a(2n+1)j = 2yj for

j = 1, ..., n, aj(2n+1) = a(2n+1)j = −2xj for j = n+1, ..., 2n and a(2n+1)(2n+1) = 4(|x|2+|y|2).

It is easy to observe that A is positive semidefinite for any (x, y, t) ∈ Hn. This operator

is degenerate elliptic, and it is hypoelliptic since it satisfies the Hormander condition.
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We pass now to describe CR covariant operators of fractional orders in Hn. For more

precise notions of CR geometry and for the construction of CR covariant fractional powers

of the sub-Laplacian on more general CR manifolds, we refer to [14] and references therein.

Here we just consider the case of the Heisenberg group, since it is the one of interest.

Introducing complex coordinates ζ = x+ iy ∈ Cn, we can identify the Heisenberg group

Hn with the boundary of the Siegel domain Ωn+1 ⊂ Cn+1, which is given by

Ωn+1 := {(ζ1, . . . , ζn+1) = (ζ, ζn+1) ∈ Cn × C | q(ζ, ζn+1) > 0} ,

with

q(ζ, ζn+1) = Im ζn+1 −
n∑
j=1

|ζj|2,

through the map (ζ, t) ∈ Hn → (ζ, t+ i|ζ|2) ∈ ∂Ωn+1. It is possible to see that X = Ωn+1

is a Kähler-Einstein manifold, endowed with a Kähler metric g+, which can be identified

with the complex hyperbolic space. The boundary manifoldM = ∂Ωn+1 inherits a natural

CR structure from the complex structure of the ambient manifold.

Scattering theory tells us that for s ∈ C, Re(s) ≥ m
2

, and except for a set of exceptional

values, given f smooth on M, the eigenvalue equation

−∆g+u− s(m− s)u = 0, in X

has a solution u with the expansionu = q(m−s)F + qsG for some F,G ∈ C∞(X ),

F |M = f.

The scattering operator is defined as

S(s) : C∞(M)→ C∞(M)

by

S(s)f := G|M.

We set s = m+γ
2

, for γ ∈ (0,m)\N. The conformal fractional sub-Laplacian on Hn is

defined in the following way:

(2.2) Pγf = CγS(s)f,
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for a constant

Cγ = 22γ−1 Γ(γ)

γΓ(−γ)
.

For γ = 1 and γ = 2 we have:

P1 = −∆H and P2 = ∆2
H + T 2.

A crucial property of Pγ is its conformal covariance.

As explained in the introduction, one of the main result in [14], is the characterization

of these fractional operators via the extension problem (1.2). Throughout this paper, we

will work on this lifted problem in the extended space, let us introduce some notations

also in this setting.

Analougsly to Hn, in Ĥn we define the following group low (that for simplicity of

notation we still denote by ◦):

for z = (x1, · · · , xn, y1, · · · , yn, t, λ) ∈ Ĥn and ẑ = (x̂1, · · · , x̂n, ŷ1, · · · , ŷn, t̂, λ̂) ∈ Ĥn, we

set

ẑ ◦ z := (x̂+ x, ŷ + y, t̂+ t+ 2
n∑
j=1

(xj ŷj − yjx̂j), λ̂+ λ).

Moreover we consider the norm given by

|z|Ĥn := [(|x|2 + |y|2 + λ2)2 + t2]
1
4 .

Finally we denote the distance dĤ between z and ẑ, by

dĤ(z, ẑ) := |ẑ−1 ◦ z|Ĥn .

Observe that when λ = λ̂ = 0, that is z and ẑ belong to Hn, dĤ(z, ẑ) = dH(z, ẑ). Moreover,

given z̄ ∈ Ĥn we set

B(z̄, R) = {z ∈ Cn+1 | dĤ(z, z̄) < R}

and for any z0 ∈ Hn × {0} we denote

B+(z0, R) = {z ∈ Hn × R+ | dĤ(z, z0) < R , λ > 0}.

The operator L, writing explicitly all the terms, becomes

L =
∂2

∂λ2
+

n∑
j=1

(
∂2

∂x2
j

+
∂2

∂y2
j

+ 4yj
∂2

∂xj∂t
− 4xj

∂2

∂yj∂t

)
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+ 4(λ2 +
n∑
j=1

(x2
j + y2

j ))
∂2

∂t2
.

Also in this case, we can write L = div(A∇T ), where now A is the (2n + 2) × (2n + 2)

symmetric matrix given by akj = δkj if k, j = 1, · · · , 2n, aj(2n+1) = a(2n+1)j = 2yj if j =

1, · · · , n, aj(2n+1) = a(2n+1)j = −2xj if j = n+1, · · · , 2n, a(2n+1)(2n+1) = 4(|x|2 + |y|2 +λ2),

a(2n+2)(2n+2) = 1, aj(2n+2) = a(2n+2)j = 0 if j = 1, · · · , 2n.

In the sequel it will be useful to express L for cylindrical and radial functions. Let

r = (|x|2 + |y|2 + λ2)1/2,

ρ = (r4 + t2)1/4.

Suppose that Ψ is a radial function, that is, Ψ depends only on ρ; then a direct com-

putations gives:

LΨ(ρ) =
r2

ρ2

(
∂2Ψ(ρ)

∂ρ2
+
Q

ρ

∂Ψ(ρ)

∂ρ

)
.(2.3)

In a similar way, we deduce that for cylindrical symmetric functions φ = φ(r, t), we

have

Lφ =
∂2φ

∂r2
+
Q− 2

r

∂φ

∂r
+ 4r2∂

2φ

∂t2
.

Using the radial form (2.3) for L, an easy computation yelds the following lemma.

Lemma 2.1 (See [11]). For ρ 6= 0, let ψ(ρ) = 1
ρQ−1 = 1

ρ2n+1 . Then we have that

(2.4)

Lψ(ρ) = 0 ∈ Hn × R+ \ {0}

− ∂
∂λ
ψ(ρ) = 0 on Hn \ {0} × {λ = 0}.

3. CR inversion

Following [4] and [24], we define the CR inversion in the half-space Hn × R+.

For any (x, y, t, λ) ∈ Hn × R+, let as before r = (|x|2 + |y|2 + λ2)
1
2 and ρ = (r4 + t2)

1
4 .

We set

x̃i =
xit+ yir

2

ρ4
, ỹi =

yit− xir2

ρ4
, t̃ = − t

ρ4
, λ̃ =

λ

ρ2
.
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The CR inversion of a function U defined on Hn × R+, is given by

v(x, y, t, λ) =
1

ρQ−1
U(x̃, ỹ, t̃, λ̃).

The following lemma shows which equation is satisfied by the CR inversion of a solution

of problem (1.7). We refer to [11] for the proof.

Lemma 3.1. (see [11]) Suppose that U ∈ C2(Hn × R+ \ {0}) ∩ C(Hn × R+ \ {0}) is a

solution of (1.7). Then the CR inversion v of U satisfies

(3.1)

Lv = 0 in Hn × R+ \ {0}

−∂v
∂λ

= ρp(Q−1)−(Q+1)v on Hn \ {0} × {λ = 0}.

4. Maximum principles and Hopf Lemma

Basic tools in the method of moving planes are the maximum principle and Hopf

Lemma. For the validity of the maximum principle and Hopf Lemma for the sublaplacian

in homogeneous Carnot groups, we refer to [6] (Chapter 5, Appendix A). We start by

recalling the classical maximum principle for Hörmander-type operators due to Bony [7].

Proposition 4.1. [7] Let D be a bounded domain in Ĥn, let Z be a smooth vector field

on D and let a be a smooth nonnegative function. Assume that U ∈ C2(D) ∩ C1(D) is a

solution of

(4.1)

−LU + Z(z)U + a(z)U ≥ 0 in D,

U ≥ 0 on ∂D.

Then U ≥ 0 in D.

We prove now two Hopf Lemmas. The first one is Hopf Lemma for the operator L in

a subset V of Ĥn. We remind that the analogue result for the Heisenberg Laplacian ∆H

in Hn was established in [3].

We start with the following definition.

Definition 4.2. Let D ⊂ Ĥn. We say that D satisfies the interior dĤ-ball condition

at P ∈ ∂D if there exists a constant R > 0 and a point z0 ∈ D, such that the ball

B(z0, R) ⊂ D and P ∈ ∂B(z0, R), where B(z0, R) = {z ∈ Ĥn | dĤ(z, z0) < R}.
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Lemma 4.3. Let D ⊂ Ĥn satisfy the interior dĤ-ball condition at the point P0 ∈ ∂D and

let U ∈ C2(D) ∩ C1(D), be a solution of

(4.2) −LU ≥ c1(z)U in D

with c1 ∈ L∞(D). Suppose that U(z) > U(P0) = 0 for every z ∈ D.

Then

lim
s→0

U(P0)− U(P0 − sν)

s
< 0.

where ν is the outer normal to ∂D in P0.

Remark 4.4. We observe that if the function c1 in Lemma 4.3 is identically zero, then

we can drop the assumption U(P0) = 0.

Proof. By assumption, there exist a point z0 = (x̂1, ..., x̂n, ŷ1, ..., ŷn, t̂, λ̂) and a radius

R > 0 such that the ball B(z0, R) ⊂ D and P0 ∈ ∂B(z0, R).

We consider the function

ψ = Ue−K(x1−x̂1)2 , for K > 0.(4.3)

An easy computation yields

∂2ψ

∂x2
1

= e−K(x1−x̂1)2 [4K2(x1 − x̂1)2U − 2KU − 4K(x1 − x̂1)
∂U

∂x1

+
∂2U

∂x2
1

],

and

∂2ψ

∂x2
j

= e−K(x1−x̂1)2 ∂
2U

∂x2
j

,
∂2ψ

∂y2
k

= e−K(x1−x̂1)2 ∂
2U

∂y2
k

,

∂2ψ

∂λ2
= e−K(x1−x̂1)2 ∂

2U

∂λ2
,

where j = 2, · · · , n, k = 1, · · · , n.

Moreover,

∂2ψ

∂x1∂t
= e−K(x1−x̂1)2 [−2K(x1 − x̂1)

∂U

∂t
+

∂2U

∂x1∂t
],

∂2ψ

∂xj∂t
= e−K(x1−x̂1)2 ∂

2U

∂xj∂t
.
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Therefore, we have

Lψ + 4K(x1 − x̂1)X1ψ = e−K(x1−x̂1)2 [−4K2(x1 − x̂1)2U + LU − 2KU ]

and hence for K sufficiently large, we deduce

−Lψ − 4K(x1 − x̂1)X1ψ ≥ 0.

We introduce now the function φ = e−αR
2 − e−αρ2 , where ρ = dĤ(z, z0), and 0 < ρ < R.

Since φ depends only on the distance from z0, and L and X1 are invariant with respect

to the group action in Ĥn, we can use formula (2.3) where now ρ = dĤ(z−1
0 ◦ z, 0), and

the factor r2

ρ2
is replaced by the function G(z−1

0 ◦ z), where

(4.4) G(x1, ..., xn, y1, ..., yn, t, λ) :=

∑n
j=1(x2

j + y2
j ) + λ2

[(
∑n

j=1(x2
j + y2

j ) + λ2)2 + t2]
1
2

.

Choosing α sufficiently large, we have

− Lφ− 4K(x1 − x̂1)X1φ

=
[
G(z−1

0 ◦ z)(4α2ρ2 − 2(Q+ 1)α)

−8Kα(x1 − x̂1)ρX1ρ] e−αρ
2 ≥ 0,

Let A := B(z0, R) \ B(z0, R1) for 0 < R1 < R. For ε small enough

ψ(z) + εφ(z) ≥ 0 in ∂A := ∂B(z0, R) ∪ ∂B(z0, R1).

Then, by Proposition 4.1 we obtain that ψ(z) + εφ(z) ≥ 0 in A.

Therefore, using that ψ(P0) = φ(P0) = 0, we deduce that for s small

ψ(P0)− ψ(P0 − sν) + ε(φ(P0)− φ(P0 − sν)) ≤ 0.

Using that φ is strictly increasing in ρ, we deduce

lim
s→0

ψ(P0)− ψ(P0 − sν)

s
< 0,

which, using the definition of ψ (4.3), implies that

lim
s→0

U(P0 − sν)− U(P0)

s
< 0.
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�

For any Ω ⊂ Hn, we denote by C the infinite cylinder

C = Ω× (0,+∞).

Before proving our second Hopf Lemma, let us recall the notion of interior ball condition

in the Heisenberg group.

Definition 4.5. Let Ω ⊂ Hn. We say that Ω satisfies the interior Heisenberg ball con-

dition at ξ ∈ ∂Ω if there exists a constant R > 0 and a point ξ0 ∈ Ω, such that the

Heisenberg ball BH(ξ0, R) ⊂ Ω and ξ ∈ ∂BH(ξ0, R).

Lemma 4.6. Let Ω ⊂ Hn satisfy the interior Heisenberg ball condition at the point

P ∈ ∂Ω and let U ∈ C2(C) ∩ C1(C), be a nonnegative solution of

(4.5)

−LU ≥ c1(z)U in C,

−∂λU ≥ c2(ξ)U on Ω,

with c1, c2 ∈ L∞(C) and c1 is nonnegative. Suppose that U((P, 0)) = 0 and U is not

identically null.

Then

(4.6) ∂νU(P, 0) < 0,

where ν is the outer normal to ∂Ω in P .

Proof. We follow the proof of Lemma 2.4 in [10].

By the strong maximum principle and by Lemma 4.3, we have that

(4.7) U > 0 on C ∪ Ω.

Indeed, the strong maximum principle ensures that U > 0 in C, moreover U cannot

vanish at a point in Ω, otherwise at this point the Neumann condition would be violated

by Lemma 4.3.

We start by proving the lemma in the case c1(z) = c2(ξ) ≡ 0.



140 ELEONORA CINTI

Since Ω satisfies the interior Heisenberg ball condition at P , there exist z0 ∈ Ω×{0} and

R > 0, such that the ball B+(z0, R) is contained in the cylinder C and (∂C ∩ {λ > 0}) ∩

∂B+(z0, R) = {(P, 0)}. We consider the set

A =
(
B+(z0, R) \ B+(z0, R/2)

)
∩ {λ > 0}.

We observe that {(P, 0)} = ∂A ∩ ∂C ∩ {λ > 0}.

For z ∈ A we consider the function η(z) = e−αρ
2 − e−αR2

, where ρ = dĤ(z, z0). Writing

L in radial coordinate as in (2.3), we have that

Lη(ρ) = G(z−1
0 ◦ z)

(
4α2ρ2 − 2(Q+ 1)α

)
e−αρ

2

,

where G is defined as in (4.4).

Therefore, for α sufficiently large, we have that

(4.8) −Lη ≤ 0.

By (4.7) we deduce that U > 0 on ∂B+(z0, R/2) ∩ {λ ≥ 0}. Hence, we may choose ε > 0

such that

U − εη ≥ 0 on ∂B+(z0, R/2) ∩ {λ ≥ 0}.

Claim: U − εη ≥ 0 in A.

Indeed, using (4.8), we deduce that −L(U − εη) ≥ 0 in A. Hence, by the maximum

principle, we have that the minimum of U − εη is attained only on ∂A (unless U − εη is

constant). Now, on one side we have that

U − εη ≥ 0 on ∂A ∩ {λ > 0}.

On the other side, since ∂λη = 0 on {λ = 0}, we deduce that −∂λ(U − εη) ≥ 0 on

∂A ∩ {λ = 0}.

Thus, using Lemma 4.3, we conclude that the minimum of U − εη cannot be achieved on(
B+(z0, R) \ B+(z0, R)/2)

)
∩ {λ = 0}. This reaches the claim.

Finally, since (U − εη)((P, 0)) = 0, we deduce that ∂ν(U − εη)((P, 0)) ≤ 0, which in

turn implies that ∂νU((P, 0)) < 0 using that ∂νη((P, 0)) < 0. This concludes the case

c1(z) = c2(ξ) ≡ 0.
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In the general case, we introduce the function v = e−βλU and we compute

−Lv = −e−βλLU + 2βe−βλUλ − β2v

≥ c1(z)− β2v + 2βe−βλ(βeβλv + eβλvλ)

= c1(z) + β2v + 2βvλ.

Therefore, we have

−Lv − 2βvλ ≥ c1(z) + β2v ≥ 0.

Moreover, for β large enough

−∂λv ≥ (β + c2(z))v ≥ 0.

We can apply the first part of the proof to the function v, noting that the same argument

works when the operator L is replaced by L+ 2β∂λ.

�

5. Proof of Theorems 1.3 and 1.4

In this last section we give the proof of our Liouville-type result.

We recall that U = U(|(x, y)|, t, λ) is a solution of

(5.1)


LU = 0 in Ĥn

+ := Hn × R+,

−∂λU = Up on Hn = ∂Ĥn
+,

U > 0 in Ĥn
+.

First of all, we consider the CR inversion of U . For z = (x, y, t, λ) ∈ Ĥn, let

w(z) =
1

ρQ−1
U(z̃),

where z̃ = 1
ρ4

(xt+ yr2, yt− xr2,−t, λρ2), r =
(∑n

j=1(x2
j + y2

j ) + λ2
) 1

2 and ρ(z) = (r4 +

t2)
1
4 = dĤ(z, 0). We have seen in Lemma 3.1 that w satisfies

(5.2)

Lw = 0 in Ĥn
+ \ {0},

−∂λw = ρp(Q−1)−(Q+1)wp on Hn.



142 ELEONORA CINTI

Observe that the function w could be singular at the origin and it satisfies limρ→∞ ρ
Q−1w(z) =

U(0).

We start now applying the moving plane method. We will move a hyperplane orthogonal

to the t-direction and use the H-reflection. More precisely, for any µ ≤ 0, let

Tµ = {z ∈ Ĥn
+ | t = µ}, and Σµ = {z ∈ Ĥn

+ | t < µ}. For z ∈ Σµ, we define

zµ = (y, x, 2µ− t, λ). To avoid the singular point, we consider

Σ̃µ = Σµ \ {eµ},

where eµ = (0, 0, 2µ, 0) is the reflection of the origin. Let

wµ(z) = wµ(|(x, y)|, t, λ) := w(|(x, y)|, 2µ− t, λ) = w(y, x, 2µ− t, λ) = w(zµ),

and

Wµ(z) := wµ(z)− w(z) = w(zµ)− w(z), z ∈ Σµ.

By using the invariance of the operator under the CR transform as in Lemma 3.1 and the

fact that ρ(zµ) ≤ ρ(z), we have thatLWµ = 0 in Ĥn
+,

−∂λWµ ≥ c(z, µ)Wµ on Hn,

where c(z, µ) =
pΨp−1

µ

ρ(Q+1)−p(Q−1) and Ψµ(z) is between w(z) and wµ(z). By the definition of

wµ and w, we have that c(z, µ) ≈ C/ρ2 at infinity.

The following proposition contains the first crucial step in the method of moving planes.

Proposition 5.1. Assume that w ∈ C2(Ĥn
+)∩C1(Ĥn

+) \ {0} satisfies (5.2). Then (i) For

µ < 0 with |µ| large enough, if infΣµWµ < 0, then the infimum is attained at some point

z0 ∈ Σµ \ {eµ}. (ii) There exists an R1 > 0 such that whenever infΣµWµ is attained at

z0 ∈ Σµ \ {eµ} with Wµ(z0) < 0, then ρ(z0) = dĤ(z0, 0) ≤ R1.

The proof is based on the construction of a comparison function and on the use of

maximum principles and Hopf Lemmas. For the details we refer to [11]. We can prove

now our main result Theorem 1.4.
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Proof of Theorem 1.4. By Proposition 5.1, we deduce that for µ negative and large in

absolute value we have that Wµ ≥ 0 in Σµ. Let us define µ0 = sup{µ < 0 | Wσ ≥

0 on Σσ \ eσ for all σ < µ}. We only need to prove that µ0 = 0. Suppose that µ0 6= 0

by contradiction. By continuity, Wµ0 ≥ 0 in Σµ0 . By the maximum principle, we deduce

that Wµ0 ≡ 0 in Σµ0 or

(5.3) Wµ0 > 0 on Σµ0 ∪ (∂Σµ0 ∩ {λ = 0} ∩ {t < µ0}) \ {eµ0}.

Using the Neumann condition satisfied by Wµ0 and the assumption µ0 > 0, we see that

Wµ0 ≡ 0 is impossible. Therefore (5.3) holds.

By the definition of µ0 there exists µk → µ0, µ0 < µk < 0 such that infΣµk
Wµk < 0.

We observe that for some positive b1:

min
{
Wµ0(z) | z ∈ ∂B+(eµ0 , |µ0|/2) ∩ Ĥn

+

}
= b1.

From this fact, using a similar argument to the one of point i) in Proposition 5.1, we

deduce that

Wµ0 ≥ b1 in B+(eµ0 , |µ0|/2) \ {eµ0}.

Therefore, we have that

lim
k→∞

inf
{
Wµk(z) | z ∈ B+(eµk , |µ0|/2) \ {eµk}

}
≥ b1.

Using this bound and the fact that Wµk(z)→ 0 as ρ(z)→∞, we deduce that for k large

enough, the negative infimum of Wµk is attained at some point zk ∈ Σµk \B+(eµk , |µ0|/2).

By Proposition 5.1 we know that the sequence {zk} is bounded and therefore, after

passing to a subsequence, we may assume that zk → z0. By (5.3) we have that Wµ0(z0) = 0

and z0 ∈ ∂Σµ0 ∩ {t = µ0}.

If zk ∈ Σµk for an infinite number of k, then ∇Wµk(zk) = 0, and therefore, by continuity

(5.4) ∇Wµ0(z0) = 0.

If z0 ∈ ∂Σµ0 ∩ Ĥn
+, then by Lemma 4.3, we have that ∂w

∂t
(z0) < 0, which gives a con-

tradiction. Analogously, using Lemma 4.6, we get a contradiction if we assume that

z0 ∈ ∂Σµ0 ∩ {λ = 0} ∩ {t = µ0}.



144 ELEONORA CINTI

In the case in which zk ∈ ∂Σµk∩{λ = 0}∩{t < µk}, we still have that the derivatives of

Wµk at zk in all directions except the λ direction vanish. Passing to the limit and arguing

as above, we get a contradiction. Hence we have established that µ0 = 0. This implies

that v is even in t, but since the origin 0 on the t-axes is arbitrary, we can perform the

CR transform with respect to any point and then we conclude that w is constant in the

direction t.

This shows that U is actually a solution of the following problem

(5.5)

∆U = 0 in R2n+1
+ ,

−∂λU = Up on R2n.

Since Q+1
Q−1

= 2n+3
2n+1

< 2n+1
2n−1

, we conclude the proof by using the standard Liouville type

theorem for problem (5.5) (see [10, 22]).

�

The following lemma allows us to deduce Theorem 1.3 by Theorem 1.4.

Lemma 5.2. Let u ∈ C2(Hn) be cylindrically symmetric and positive (respectively non-

negative). Then the corresponding solution U of the extension problem (1.7) is cylin-

drically simmetric, i.e. U = U(r0, t, λ) with r0 =
√
x2 + y2, U is positive (respectively

nonnegative) and moreover U ∈ C2(Ĥn
+) ∩ C1(Ĥn

+).

The proof is technical and it uses the Fourier transform in the Heisenberg group. We

refer to [11] and [14] for details.

We conclude with the proof of Theorem 1.3.

Proof of Theorem 1.3. By Lemma 5.2, we see that if u is a cylindrical function, that is

u = u(|(x, y)|, t), then its extension U satisfying (1.2) is also cylindrical in the all halfspace

Hn×R+, in the sense that U = U(|(x, y)|, t, λ). Using this fact, the conclusion follows as

a corollary of Theorem 1.4.

�
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