
HARMONIC ANALYSIS TECHNIQUES IN SEVERAL COMPLEX
VARIABLES

SU UN’ APPLICAZIONE DELL’ ANALISI ARMONICA REALE
ALL’ANALISI COMPLESSA IN PIU’ VARIABILI

LOREDANA LANZANI∗

Abstract. We give a survey of recent joint work with E. M. Stein (Princeton Univer-

sity) concerning the application of suitable versions of the T(1)-theorem technique to

the study of orthogonal projections onto the Hardy and Bergman spaces of holomorphic

functions for domains with minimal boundary regularity.

Sunto. Questo resoconto offre una sintesi di una serie di recenti collaborazioni con E. M

Stein (Princeton University) sull’applicazione del celeberrimo teorema T(1) allo studio

delle proiezioni ortogonali sugli spazi di Hardy e di Bergman per funzioni olomorfe su

domini dotati di minima regolarita’ al bordo.
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1. Introduction

This is a summary of recent work [59]-[64] concerning the Lp-regularity properties of

orthogonal projections (Bergman projection, Szegő projection) onto L2-closed subspaces of

holomorphic functions (Bergman space, holomorphic Hardy space) for bounded domains

D ⊂ Cn with minimal boundary regularity. Regularity properties of the Szegő and

Bergman projections, in particular Lp-regularity, have been the object of considerable
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interest for more that 40 years. When the boundary of the domain D is sufficiently

smooth, decisive results were obtained in the following settings: (a), when D is strongly

pseudoconvex [49], [65]; (b), when D ⊂ C2 and its boundary is of finite type [69], [78];

(c), when D ⊂ Cn is convex and its boundary is of finite type [70], [72]; and (d), when

D ⊂ Cn is of finite type and its Levi form is diagonalizable [19]. Related results include

[1], [4], [7], [8], [16], [29], [33]-[37], [39], [40], [38], [56], [78], [84], [85], [89].

It should be noted that several among these works depend on good estimates or explicit

formulas for the Szegő or Bergman kernels. In our non-smooth setting these are unavail-

able and we have to proceed via a different framework, by pursuing a theory of singular

integral operators with holomorphic kernel that blends the complex structure of the am-

bient domain with the Calderòn-Zygmund theory for singular integrals on non-smooth

domains in R2n. Our present task is to highlight the main threads linking the various

themes in [59]-[64] and convey a general idea of the methods of proof (and at times we

will sacrifice technical detail in favor of a more streamlined exposition). While most of

the proofs are deferred to [59]-[64], here we indicate references to the specific statements

therein.

Aknowledgment. I am grateful to the organizers and participants of the Bruno Pini

Mathematical Analysis Seminar for the kind hospitality and lively discussions.

2. The Szegő projection

2.1. Motivation and context. Our starting point is the seminal work by Calderòn [17],

Coifman-McIntosh and Meyer [23] and David [25] on the Lp(Γ)-regularity of the classical

Cauchy integral for a planar curve Γ ⊂ C, in the situation when Γ is the boundary of a

domain D ⊂ C (and we will write Γ = bD):

(2.1) Cf(z) =
1

2πi

∫
w∈bD

f(w)
dw

w − z
, z ∈ D.

For z ∈ bD we interpret (2.1) as a singular integral in the “principal value” sense, see [22,

(1.1)]. The situation when bD is of class C1,α (with α > 0) can be easily reduced to the

classical setting of the Hilbert transform operator [22, Section 1.1, Example 8]. However

dealing with the case when bD is of class C1 and more generally Lipschitz, required new
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ideas that ultimately led to the so-called “T(1)-theorem” technique [26] for a more general

class of singular integral operators1, and to applications to the study of analytic capacity

[90] as well as the solution of the Vitushkin conjecture [91]. In the setting of higher

dimension (that is, for a Lipschitz domain D ⊂ RN with N ≥ 2), the Cauchy integral and

the related singular integral operators collectively known as boundary layer potentials2

provide the solution to various boundary value problems for harmonic functions. Here

we are especially interested in the Lp-Dirichlet problem for harmonic functions: given

u : bD → R with u ∈ Lp(bD, dσ), where dσ is the induced Lebesgue measure on bD, find

U : D → R such that

(2.2)


Uxx + Uyy =: ∆U(z) = 0, if z ∈ D

lim
z→w

U(z) =: U+(w) = u(w), if w ∈ bD

‖N (U)‖Lp(bD,dσ) ≤ C‖u‖Lp(bD,dσ) ,

where the limit that defines the boundary value U+ is to be suitably interpreted (for

instance, as a “non-tangential limit” [47, page 24]) and N (U) denotes the so-called “non-

tangential maximal function” for U , see [47, page 13] and references therein. The solution

of (2.2) can be expressed in terms of the aforementioned boundary layer potentials acting

on the data u. As it turned out, the size of the p-range for which existence, uniqueness

and Lp-regularity of the solution occur, is related to the size of the Lipschitz constant of

the domain [47, Theorem 2.2.2]. (We may think of C1- or smoother domains as having

Lipschitz constant equal to zero.)

2.2. Regularity of the Szegő projection: statement of the problem. We are inter-

ested in the holomorphic analog of the problem (2.2) for domains with minimal regularity,

which we presently recall in the situation when D ⊂ C ≡ R2 (the planar setting). The

Lp-Dirichlet problem for holomorphic functions on a planar domain D ⊂ C is stated as

1that include the the Cauchy integral (2.1) as a prototype.
2namely, the single layer potential and the double layer potential operators, see [47, Section 2.2] and

references therein.
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follows. Given g : bD → C in Lp(bD, dσ), find G : D → C such that

(2.3)


1/2(Gx − iGy) =: ∂G(z) = 0, if z ∈ D

lim
z→w

G(z) =: G+(w) = g(w), if w ∈ bD

‖N (G)‖Lp(bD,dσ) ≤ C‖g‖Lp(bD,dσ),

where we adopt the convention that z ∈ D is expressed as z = x + iy. It is clear that

if G solves (2.3) with data g = u + iv then e.g., U := ReG solves (2.2) with data u.

However, in contrast with the situation for (2.2), the natural data space for (2.3) is not

Lp(bD, dσ) + iLp(bD, σ): it is instead the Hardy Space of holomorphic functions Hp(D)

(aka Smirnov Class)

Hp(D) :=

{
F

∣∣∣∣ ∂F (z) = 0, z ∈ D, sup
ε>0

∫
z∈bDε

|F (z)|pdσε(z) < +∞
}

where {Dε}ε is any family of (say, rectifiable) subdomains of D with Dε ↑ D.

In factHp(D) can be identified with a proper subspace of Lp(bD, dσ)+iLp(bD, dσ) which

we denote Hp(bD, dσ). More precisely, we invoke the well-known fact that functions in

Hp(D) have non-tangential limits that belong to Lp(bD, dσ), see [28] and [87], and then

we identify Hp(bD, dσ) with the space {F+ | F ∈ Hp(D)}. Returning to the Dirichlet

problem for holomorphic functions, one thus needs g = F+ for some F ∈ Hp(D) and if

this is the case then G := F solves (2.3).

The holomorphic Hardy spaceHp(bD, dσ) is a closed subspace of Lp(bD, dσ) (a fact that

can be seen e.g., by applying the Cauchy formula on small discs + the co-area formula

[31]); thus for the exponent p = 2 the theory of Hilbert spaces grants the existence

of a unique, orthogonal projection S: L2(bD, dσ) → H2(bD, dσ), known as the Szegő

projection, which is a singular integral operator characterized by the following properties:

S2 = S, S∗ = S, ‖S‖L2(bD,σ)→L2(bD,dσ) = 1 .

(Here S∗ denotes the adjoint of S taken with respect to the inner product in L2(bD, dσ).)

These properties in particular indicate that the Szegő projection is the natural solution

operator for (2.3) in the case when p = 2. On the other hand, solving (2.3) in Lp(bD, dσ)

for p 6= 2 is a much harder problem, and one that is ultimately related to the
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Lp-Regularity problem for S: under minimal assumptions on D, find the maximal

exponent P = P (D) ∈ [2,+∞] such that S : Lp(bD, dσ) → Lp(bD, dσ) is bounded for all

P ′ < p < P .

By symmetry considerations (the fact that S∗ = S) we have that P and P ′ must be

conjugate exponents (namely, 1/P + 1/P ′ = 1).

We point out that the problem (2.3) and the Lp-regularity problem for S can also

be stated in higher dimension, that is for D ⊂ Cn: in this setting the quantity ∂G is

interpreted as a differential form of type (0, 1) and the condition that ∂G = 0 is then

equivalent to the requirement that

Gxj − iGyj = 0 for all j = 1, . . . , n

where xj + iyj = zj with j = 1, . . . n and z = (z1, . . . , zn) ∈ D. (Everything else in

(2.3), also the definitions pertaining the Hardy spaces Hp(bD, dσ) and the Lp-regularity

problem for S, are meaningful regardless of the size of the dimension3).

2.3. Regularity of the Szegő projection: case of planar domains. It turns out

that in complex dimension n = 1, that is for a bounded and simply connected domain

D ⊂ C, the size of the maximal interval (P ′, P ) is related to the boundary regularity of

D. Specifically, we have the following results:

1. If D ⊂ C is Vanishing Chord-Arc (e.g., D of class C1), then P = +∞, [59,

Theorem 2.1 (1)] (see also [57]).

2. If D ⊂ C is Lipschitz with constant M , then

P = 2
(

1 +
π

2 arctanM

)
> 4 ,

and the interval determined by such P is optimal within the Lipschitz category,

[59, Theorem 2.1 (2), and page 69].

3. If D ⊂ C is a rectifiable local graph, then P = 4, [59, Theorem 2.1 (3)].

4. If D ⊂ C is Ahlfors-Regular, then P = 2 + ε for some ε = ε(D) > 0, [59, Theorem

2.1 (4)].

3A more general version of these problem can be stated in which the data g is a differential form of

degree 0 ≤ r ≤ 2n− 1 and includes (2.3) as the special case: r = 0, but we will not pursue it here.
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5. There is a rectifiable domain D0 ⊂ C, see [9], such that

S : Lp(bD0, σ)→ Lp(bD0, σ) ⇐⇒ p = 2.

The methods of proof for all these results rest on the existence of a conformal map

ψ : D1(0) = {|z| < 1} → D (namely, the original problem for S is reduced to a weighted

problem for S0= the Szegő projection of D1(0) with weight ω = |ψ′|1−p/2 to which one may

apply the theory of Muckenhoupt [88]) and thus are not applicable to higher dimension

that is, to the situation when D ⊂ Cn and n ≥ 2.

On the other hand, item 1. can also be studied via a conformal map-free argument

that relies on the comparison of S with the Cauchy integral C. We point out that for the

Cauchy integral boundedness in L2 implies boundedness in Lp for 1 < p < ∞, see [88],

and so in general we have S 6= C.

The approach to the analysis of the Szegő projection that we are about to describe was

first formulated for the case when D ⊂ C is smooth, see [49] and [50], and the comparison

of C and S hinged on the following facts:

(a.) Each of C and S is a projection4: L2(bD, dσ)→ H2(bD, dσ).

(b.) S is self-adjoint while C (in general) is not5.

(c.) Each of C and S is bounded: L2(bD, dσ)→ L2(bD, dσ).

(d.) The kernel of the operator A(σ) := C∗−C, where C∗ denotes the formal adjoint of C

in L2(bD, dσ), is “small” if D is sufficiently smooth (a cancellation of singularities

occurs by performing a second-order Taylor expansion at w = z).

Then one has the following identities on L2(bD, dσ):

SC = C and CS = S , by item (a.) .

Taking L2(bD, dσ)-adjoints of the second identity above, we get

SC∗ = S , by item (b.).

4that is, S ◦ S = S and C ◦ C = C.
5unless D is a disc, see [50].
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Subtracting the first of the two identities above from the latter we obtain

(2.4) S [I −A(σ)] = C in L2(bD, dσ)

where I denotes the identity operator: L2(bD, dσ) → L2(bD, dσ). Now using (c.) and

the fact that (A(σ))∗ = −A(σ) (recall that A(σ) = C∗ − C) it is not hard to see that the

operator I −A(σ) is invertible on L2(bD, dσ) with bounded inverse, and we conclude that

the identity

(2.5) S = C [I −A(σ)]−1 holds in L2(bD, dσ).

However, by item (d.) (which holds if D is smooth) the operator A(σ) is in fact compact

in Lp(bD, dσ) for 1 < p <∞, and by the closed graph theorem it follows that I −A(σ) is

invertible in Lp(bD, dσ) with bounded inverse, see [59, page 65]. It follows that the right-

hand side of (2.5) is a well-defined and bounded operator: Lp(bD, dσ) → Lp(bD, dσ) for

1 < p < ∞, and we conclude from the above that S extends to a bounded operator on

Lp(bD, dσ) for 1 < p < ∞, thus solving the Lp-regularity problem for S with P = ∞,

whenever D ⊂ C is smooth.

We remark that the steps (a.) – (d.) can be stated for any positive boundary measure

µ (not just the induced Lebesgue measure σ) provided the orthogonal projection S ≡ Sµ
is defined with respect to the duality induced by the measure µ, namely

(f, g) =

∫
w∈bD

f(w)g(w) dµ(w).

2.4. Regularity of the Szegő projection: dimension-induced obstructions. The

procedure described in the previous section is, in principle, dimension-free in the sense

that it relies on the existence of “some” operator C that satisfies the four conditions (a.)

through (d.). In the setting of Section 2.3 (that is when D ⊂ C and D is sufficiently

smooth) one takes C to be the Cauchy integral (2.1), and the proof of the crucial item

(a.) then rests on the following two features of C:

(i.) The fact that Cauchy kernel C(w, z) (that is the kernel of C) is universal in the

sense that its dependence on the domain D is effected only through the inclusion

j : bD ↪→ C .
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Specifically, we have

(2.6) C(w, z) =
1

2πi
j∗
(

dw

w − z

)
w, z ∈ C× C, w 6= z ,

where j∗ is the so-called pull-back by the inclusion map, see e.g., [82, Section

III.1.5].

(ii.) The fact that the Cauchy kernel function 1/(w− z) is (obviously) holomorphic in

the parameter z ∈ D whenever w ∈ C \D, in particular for each fixed w ∈ bD.

In higher dimension both of these properties become highly problematic as the only known

universal reproducing kernel is the Bochner-Martinelli kernel:

(2.7) H(w, z) =
(n− 1)!

(2πi)n

n∑
j=1

j∗

(
wj − zj
|w − z|2n

dwj
∧
ν 6=j

dwν ∧ dwν

)
, w, z ∈ Cn×Cn , w 6= z,

see e.g., [82, Lemma IV.1.5 (a)]. It is clear that H(w, z) = C(w, z) when n = 1, because

in such case the coefficient in H(w, z) is just (w − z)/|w − z|2 = 1/(w − z).

On the other hand, when n ≥ 2 the coefficients of the kernel (2.7) are obviously nowhere

holomorphic, thus H(w, z) is of no use in the analysis of the Szegő projection described

in the previous section6: there is no canonical, higher dimensional holomorphic analog

of the Cauchy kernel (2.6). Instead, one has to look into ad-hoc constructions that

are tailored to certain specific features of the domain. More precisely, the existence

of a higher-dimensional holomorphic analog of C(w, z) is intimately connected with a

geometric constraint on the domain, namely the requirement that D be pseudoconvex

[82, Section II.2.10] or, equivalently, that D be a so-called weak (or local) domain of

holomorphy [82, Section II.2.1]: for any w ∈ bD there must be a function fw(z) that is

holomorphic in z ∈ D but cannot be extended holomorphically past w. While any planar

domain D ⊂ C is obviously a weak domain of holomorphy7, there are domains D ⊂ Cn

(n ≥ 2) with the property that any function holomorphic in D can be holomorphically

extended to a larger domain Ω ⊃ D [82, Lemma II.2.2].

6The Bochner Martinelli integral for a general domain D cannot satisfy item (a.).

7for any w ∈ bD, simply take fw(z) to be the Cauchy kernel function, i.e. fw(z) = 1/(w − z), z ∈ D.
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2.5. Regularity of the Szegő projection in higher dimension: the case of smooth

domains. The Cauchy-Fantappiè theory (see [61, Section 4] and references therein) pro-

vides an algebraic framework to construct explicit, higher dimensional holomorphic ana-

logues of the Cauchy kernel (2.6) for any bounded, strongly (equivalently, strictly) pseu-

doconvex domain D ⊂ Cn, see [82, Section II.2.8]. The kernel construction and the proof

of the corresponding conditions (a.) through (d.) were first carried out in [42], [49]

and [81] and dealt with the case when the strongly pseudoconvex domain D is smooth

(of class C3 or better). In this section we describe the construction in such setting (see

also [48] and [61]).

For D strongly pseudoconvex we write D = {ρ(z) < 0} where ρ : Cn → R is a strictly

plurisubharmonic defining function for D (see [82, Sections II.2.3 and II.2.7 ]), which is

taken to be of class C3 or better. For fixed z ∈ D, we consider the following differential

form of type (1, 0) in the variable w

η(w, z) =
n∑
j=1

ηj(w, z) dwj

where we have set

(2.8) ηj(w, z) = χ0(w, z)

(
∂ρ

∂ζj
(w)− 1

2

n∑
i=1

∂2ρ(w)

∂ζi∂ζj
(wi − zi)

)
+ (1− χ0(w, z))(wj − zj)

with χ0 a smooth cutoff function supported in {|w − z| < δ}.

Now η(w, z) is a generating form at w in the sense that the complex-valued function of z

〈η(w, z), w − z〉 :=
n∑
j=1

ηj(w, z) (wj − zj)

is bounded below by |w − z|2 for any z ∈ D, see [61, Section 4]. More precisely we have

(2.9) Re〈η(w, z), w − z〉 ≥ c|w − z|2, w ∈ bD, z ∈ D .

(We point out that the validity of this inequality when z is close to w is a consequence

of the strict plurisubharmonicity of ρ, see [61, Lemma 4].) The Cauchy-Fantappiè theory

then grants that the kernel

(2.10) C̃(w, z) =
1

(2πi)n
η ∧ (∂wη)n−1(w, z)

〈η(w, z), w − z〉n
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reproduces holomorphic functions (more precisely, the induced singular integral fixes the

space H2(bD, dσ)) and it is clear that C̃(w, z) satisfies property (b.), see [61, Section 4]

and references therein8. On the other hand, it is apparent from (2.8) that, as a function

of z ∈ D, this kernel is holomorphic only for z near w ∈ bD. Thus, in order to achieve

the crucial condition (a.) one needs to modify C̃(w, z) by adding a correction term that

will make the kernel globally holomorphic:

(2.11) C(w, z) = C̃(w, z) + Cρ(w, z) .

The correction Cρ(w, z) is obtained either by solving a ∂-problem (in the z-variable) on a

strongly pseudoconvex, smooth domain Ω that contains D, see [49] and [61, Section 8], or

by solving a Cousin problem as in [42] and [81]. The resulting kernel (2.11) will be globally

holomorphic and the corresponding operator (still denoted C) will satisfy properties (a.)

and (b.).

We point out that the procedure described up to this point can be carried out under

the weaker assumption that the domain (that is the defining function ρ) be of class C2

[82, Section V.1.1]: it was in order to prove the remaining properties (c.) and (d.) that

one needed more regularity. Specifically, in the setting of [49] one needed to assume that ρ

be of class C3, and the proof of item (c.) (the L2(bD, dσ)-regularity of the holomorphic

Cauchy integral C) could then be achieved via an “osculation by model domain” technique.

The basic idea is that there is a strongly pseudoconvex and smooth “model” domain D0

for which the operator C0 constructed as in (2.10) and (2.11) takes an especially simple

form, and the validity of property (c.) for such a C0 is easily verified by direct inspection9.

On the other hand, if D is strongly pseudoconvex and of class C3 then at any boundary

point it is osculated by a copy of D0 with small error. Furthermore, one may write the

operator C (for the original domain D) as the sum of C0 (the corresponding operator

for the model domain D0) plus the “error” operator C − C0, and if D is of class C3 the

error operator is easily seen to be bounded, thus concluding the proof of (c.). Finally, a

8Roughly speaking, one wants C(w, z) 6= C(z, w), which is the case whenever D 6= {|z|2 < 1}.
9In fact D0 is the Siegel upper half space: {z = (z′, xn + iyn) ∈ Cn | |yn| > |z′|2}, where z′ =

(z1, . . . , zn−1).
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2nd-order Taylor expansion of ρ in the variable z about the point w shows that the kernel

of A(σ) = C∗ − C has the “smallness” property (d.) whenever D is of class C3 (which

allows for good control on the tail of the expansion).

Having constructed an operator C that satisfies the four properties (a.) through (d.),

one proceeds as in Section 2.3 to conclude that the Lp(bD, dσ)-regularity problem for S

is solved with P =∞, whenever D is strongly pseudoconvex and of class C3, see [48] and

[49].

We point out that the methods of proof for items (c.) and (d.) as described above

break down as soon as the regularity of D is below the class C3. (The “error” operator

C − C0 that occurred the proof of (c.) can no longer be controlled, whereas for (d.)

there is no control on the size of the tail in the aforementioned Taylor expansion.)

2.6. Higher dimensional holomorphic kernels for non-smooth domains: kernel

construction. We now describe the results in [63]. As we have seen, a natural require-

ment for the existence of a holomorphic Cauchy-type kernel (2.11) is that the domain

be strongly pseudoconvex, which is a condition that essentially involves two degrees of

differentiability of the boundary of the domain. As a result, the threshold of smoothness

for a strongly pseudoconvex domain should be the class C2 (as opposed to the class C1 for

a planar domain): as before, we take ρ to be a strictly plurisubharmonic defining function

for D, however now ρ is merely of class C2. To make up for the lack of differentiability of

those second derivatives of ρ that occurred in the definition of the generating form η, see

(2.8), we “borrow some regularity” by considering families of functions {τ (ε)i,j }ε of class C2

such that

(2.12) sup
w∈bD

∣∣∣∣∂2ρ(w)

∂ζi∂ζj
− τ (ε)i,j (w)

∣∣∣∣ < ε , i, j = 1, . . . , n

for any 0 < ε ≤ ε0, where the size of ε0 is determined by the the strict plurisubharmonicity

of ρ, see [82, (2.26)].

One then sets

η(ε)(w, z) =
n∑
j=1

η
(ε)
j (w, z) dwj
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with

(2.13) η
(ε)
j (w, z) = χ0(w, z)

(
∂ρ

∂ζj
(w)− τ (ε)i,j (w)(wi − zi)

)
+ (1− χ0(w, z))(wj − zj)

where χ0 is again a smooth cutoff function supported in {|w − z| < δ}.

It follows from (2.12) and (2.9) that

(2.14) Re〈η(ε)(w, z), w − z〉 ≥ c|w − z|2

and also

(2.15)
∣∣〈η(ε)(w, z), w − z〉∣∣ ≈ |〈η(w, z), w − z〉|

whenever z ∈ D and w ∈ bD, and for any 0 < ε ≤ ε0, with the constant c in (2.14) and

the implied constants in (2.15) independent of ε, see [63, Part I]. It follows from (2.14)

that, as was the case for η in the previous section, each η(ε) is a generating form (for any

0 < ε < ε0). Thus, the resulting Cauchy-Fantappiè kernels

(2.16) C̃(ε)(w, z) =
1

(2πi)n
η(ε) ∧ (∂wη

(ε))n−1(w, z)

〈η(ε)(w, z), w − z〉n

have the reproducing property (a.) but as before, are only locally holomorphic (for z ∈ D

near w ∈ bD). To achieve global holomorphicity one again has to solve a ∂-problem to

produce suitable correction terms:

(2.17) C(ε)(w, z) =
1

(2πi)n
η(ε) ∧ (∂wη

(ε))n−1(w, z)

〈η(ε)(w, z), w − z〉n
+ C(ε)

ρ (w, z).

What matters here is that each of the corrections C
(ε)
ρ (w, z) satisfies a uniform bound

which is independent of ε, namely

sup
(w,z)∈bD×D

|C(ε)
ρ (w, z)| ≤ C for any 0 < ε ≤ ε0.

We let {Cε}ε denote the resulting family of (globally) holomorphic Cauchy-type integral

operators. It is clear from the above that each Cε satisfies conditions (a.) and (b.) in

Section 2.3, for any 0 < ε < ε0.
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2.7. L2(bD)-regularity of the Cε’s: preliminary observations. It turns out that the

“borrowed regularity” (2.12) is not good enough to prove L2-boundedness of the Cε’s by

the “osculation by model domain” method that was described in Section 2.5 (there is a

problem with controlling the error Cε−C0, so regularity for the Cε’s cannot be deduced from

the corresponding result for C0) and we must proceed by a different route, namely, by the

“T (1)-theorem technique”. To this end, we make a number of preliminary observations.

• Our first observation [63, Part I] is that there is an ad-hoc measure for bD, which

we call the Leray-Levi measure λ, that is better suited to study the Cε’s than the induced

Lebesgue measure σ.

More precisely, we set

dλ(w)=(2πi)−nj∗
(
∂ρ∧(∂∂ρ)n−1

)
(w), w ∈ bD.

Then in fact

dλ(w)=Λ(w)dσ(w)

with

(2.18) Λ(w) = (n− 1)!(4π)−n| det ρ(w)| |∇ρ(w)|, w ∈ bD,

where det ρ(w) is the determinant of the so-called “Levi form for D”, which may be

identified10 with the matrix{
∂2ρ

∂zj∂zk

}∣∣∣∣
z=w

, 1 ≤ j, k ≤ n− 1 ,

see [82, Lemma VII.3.9]. Since D is strongly pseudoconvex and of class C2 it follows that

c1 ≤ Λ(w) ≤ c2 , w ∈ bD,

so that λ ≈ σ (the two measures are mutually absolutely continuous) and thus the Cε’s

will be equivalently bounded with respect to either measure.

• Secondly, we have that the function

d(w, z) = |〈η(w, z), w − z〉|1/2 , w, z ∈ bD
10here we have chosen a local coordinate system with respect to which the complex tangent space to

bD at w is identified with the space {(z1, . . . , zn−1, 0) | zj ∈ C}.
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is a quasi-distance, namely, for any w, z, ζ ∈ bD we have d(w, z) = 0 ⇐⇒ w = z;

d(w, z) ≈ d(z, w), and d(w, z) ≤ C
(
d(w, ζ) + d(ζ, z)

)
, see [63, Part I].

• Moreover we have that the ensemble X = {bD; d;λ} defines a space of homogeneous

type with homogeneous dimension 2n, see [63, Part I]. That is, we have that λ is a doubling

measure for the boundary balls Br(w) = {z ∈ bD | d(z, w) ≤ r} and in fact

λ
(
Br(w)

)
≈ r2n for any w ∈ bD and r > 0.

2.8. L2(bD, dλ)-regularity of the Cε’s: ad-hoc decompositions; the role of the

Leray-Levi measure; application of T (1). In order to take full advantage of the

measure λ we make the following decomposition of each of the Cε’s, see [63, Part I]:

Cε = C]ε +Rε .

Here the “essential part” C]ε has kernel

C]
ε(w, z) =

dλ(w)

〈η(ε)(w, z), w − z〉n
=

1

(2πi)n
j∗(∂ρ ∧ (∂∂ρ)n−1(w)

〈η(ε)(w, z), w − z〉n

and captures the full singularity of Cε in the sense that the “remainders” Rε’s are smooth-

ing operators that map: L2(bD) → C(D), so in particular proving L2(bD)-regularity for

Cε is equivalent to proving the corresponding result for C]ε (and we will henceforth ignore

the Rε’s).

Now there is a further decomposition of C]ε , and a corresponding one for its formal ad-

joint on L2(bD, dλ) that will play an important role in the application of the T (1)-theorem.

The basic idea is that one may express the kernels of each of C]ε and its L2(bD, dλ)-adjoint

(C]ε)∗ as “appropriate derivatives” (plus acceptable remainders) that is, as the differentials

of (2n− 2)-forms whose coefficients have better homogeneity than the kernels of each of

C]ε and (C]ε)∗; the desired decompositions will then result by an application of Stokes’

theorem. To put matters more precisely, given f ∈ C1(bD) we have [63, Part I]

C]ε(f)(z) = Eε(df)(z) +R]
ε(f)(z), for z ∈ bD

and

(C]ε)∗(f)(z) = Ẽε(df)(z) + R̃]
ε(f)(z), for z ∈ bD .
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Here the “essential parts” Eε and Ẽε act on continuous 1-forms ω on bD as follows:

Eε(ω)(z) = cn

∫
w∈bD

ω ∧ j∗(∂∂ρ)n−1(w)

〈η(ε)(w, z), w − z〉n−1
, z ∈ bD,

with cn = 1/[(n − 1)(2πi)n]. Comparing Eε with C]ε we see that the kernel of Eε has

the improved homogeneity 〈η(ε)(w, z), w − z〉−n+1 (as opposed to 〈η(ε)(w, z), w − z〉−n).

Similarly, we have

Ẽε(ω)(z) = cn

∫
w∈bD

ω ∧ j∗(∂∂ρ)n−1(w)

〈η(ε)(z, w), z − w〉n−1
, z ∈ bD.

In both decompositions, the remainders R]
ε and R̃]

ε are once again smoothing operators:

L2(bD, dλ)→ C(D). We point out that the decomposition for (C]ε)∗ takes full advantage

of the measure dλ, in the sense that the decomposition for the adjoint of C]ε is valid only

if the adjoint is computed with respect to the duality for L2(bD, dλ) (there is no such

decomposition for the adjoint of C]ε in L2(bD, dσ)).

Using these decompositions one then shows that the functions

(2.19) h = C]ε(1) and h∗ = (C]ε)∗(1)

are continuous on bD, see [63, Part I].

The properties of the homogenous space {bD, d, λ} along with the above decompositions

for C]ε and its L2(bD, dλ)-adjoint (C]ε)∗ now ensure that for any 0 < ε ≤ ε0, the operators

T := C]ε satisfy all the hypotheses of the T (1)-theorem, namely: the kernel of C]ε satisfies

appropriate size and regularity estimates; the operator C]ε is weakly bounded and satisfies

the cancellation conditions11 (2.19), see [63, Part I]. This concludes the proof of the

Lp(bD, dλ)-regularity of C]ε and therefore the proof of item (c.) (see Section 2.3) for each

of the operators Cε’s.

11In fact h and h∗ can be proved to be be Hölder continuous in the sense that e.g., |h(w) − h(z)| ≤

Cd(w, z)α, w, z ∈ bD for any 0 < α < 1, and this in turn allows to reduce the application of the T (1)

theorem to the simpler setting: T0(1) = 0 = T ∗0 (1) for a suitable auxiliary operator T0, see [62, Section

6.3] and also [63, Part I].
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2.9. Lp(bD, dλ)-regularity of the Szegő projection (Leray-Levi measure). The

notion of orthogonal projection (in particular the definition of the Szegő projection) relies

on the specific measure that is being used in the definition of L2(bD): different measures

give rise to different orthogonal projections and there no simple way of deducing regularity

for one projection from the corresponding result for the other. In this section we highlight

the procedure carried out in [63, Part II] to solve the Lp(bD)-regularity problem for the

Szegő projection defined with the respect to the Leray-Levi measure and its corresponding

duality on L2(bD):

(2.20) (f, g) =

∫
w∈bD

f(w)g(w) dλ(w).

We will denote such projection Sλ. What is still missing from the procedure summarized

in Section 2.3 is item (d.), namely the “smallness” of the operators A(λ)
ε = C∗ε −Cε, where

the adjoint C∗ε is computed with respect to the duality (2.20). Going back to the setting

of [49] (D of class C3) such smallness resulted from the following estimate for the kernel

of A(σ) (denoted below by A(σ)(w, z))

(2.21) |A(σ)(w, z)| ≤ C|w − z|2+β whenever d(w, z) ≤ δ

for some β > 0 (in fact for β = 1), which ultimately gave the compactness of A(σ) in

Lp(bD, dσ): one considered the operators {A(σ)
δ }δ with kernels

(
1− χδ(|w − z|2)

)
A(σ)(w, z)

for a smooth cutoff function χδ(t). Such operators are obviously compact in Lp(bD, dσ)

for 1 < p < ∞. Now the estimate (2.21) grants ‖A(σ)
δ − A(σ)‖Lp→Lp ≤ Cδβ, and the

compactness of A(σ) then follows by letting δ → 0.

Note that the positivity of β in (2.21) is crucial: the estimate |A(σ)(w, z)| ≤ Cd(w, z)2

would only yield the inconclusive inequality ‖A(σ)
δ −A(σ)‖Lp→Lp ≤ C. However in our less

regular setting there is no analog of (2.21) with β > 0. In fact the operator A(λ)
ε will in

general fail to be compact in Lp(bD, λ), see [6, Corollary 5], and one must proceed by a

different analysis. What holds in place of (2.21) is the following, “weaker” smallness for
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the kernels of the operators A(λ)
ε (denoted A

(λ)
ε (w, z)), namely:

(2.22) |A(λ)
ε (w, z)| ≤ C ε d(w, z)2 whenever d(w, z) ≤ δ ,

To use (2.22) we consider the operators A(λ)
ε,δ with kernel

χδ(d(w, z))A(λ)
ε (w, z)

where A
(λ)
ε (w, z) is the kernel of A(λ)

ε and χδ(t) is a smooth cutoff function. Then we have

that

(2.23) A(λ)
ε = A(λ)

ε,δ +R(λ)
ε,δ .

Now one may apply the T (1)-theorem (as in the previous section) to prove that the

“essential part” A(λ)
ε,δ is bounded: Lp(bD, dλ)→ Lp(bD, dλ) for 1 < p <∞. In fact (2.22)

yields the improved estimate [63, Part II]

(2.24) ‖A(λ)
ε,δ ‖Lp(bD,dλ)→Lp(bD,dλ) ≤ ε1/2Mp, 1 < p <∞

for any 0 < δ < δ0(ε) and for any 0 < ε ≤ ε0, where the bound Mp is symmetric in p, i.e.

Mp = Mp′ whenever 1/p+ 1/p′ = 1.

On the other hand, the “remainder” operatorsR(λ)
ε,δ (whose kernel are supported outside

of the critical balls {d(w, z) < δ}) are readily seen to map: L1(bD, dλ) → L∞(bD)

(although their Lp → Lp-norms may be very large).

We now proceed to compare Sλ with the Cauchy-type integrals Cε. By items (a.) and

(b.) (proved in Section 2.6) and proceeding as in Section 2.3, we recover the identity

(2.25) Sλ [I −A(λ)
ε ] = Cε in L2(bD, dλ) for any 0 < ε < ε0.

Combining the above with (2.23) we get

Sλ [I −A(λ)
ε,δ ] = Cε − SλR(λ)

ε,δ in L2(bD, dλ) for any 0 < ε < ε0.

We now fix 1 < p < ∞ and prove Lp(bD, dλ)-regularity of Sλ for such p; for the time

being we take 1 < p < 2, so that the two inclusions: Lp(bD, dλ) ↪→ L1(bD, dλ) and
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L2(bD, dλ) ↪→ Lp(bD, dλ) are bounded12. It follows that the operator

SλR(λ)
ε,δ : Lp ↪→ L1 → L∞ ↪→ L2 → L2 ↪→ Lp

is bounded for any 0 < δ < δ0(ε) and any 0 < ε ≤ ε0 (here we have used the L1 → L∞-

regularity of R(λ)
ε,δ and the L2 → L2-regularity of Sλ ). Moreover Cε is bounded: Lp → Lp

for any 0 < ε ≤ ε0 by item (c.) (which was proved in sections 2.7 and 2.8). We now fix

ε = ε(p) << 1 so that

ε1/2Mp < 1 ,

where Mp is as in (2.24). Then by (2.24) we have that for any δ ≤ δ0(ε) the operator

I −A(λ)
ε,δ

is invertible in Lp(bD, dλ) by a partial Neumann series, and has bounded inverse.

We conclude from the above that

(2.26) Sλ = [Cε − SλR(λ)] [I −A(λ)
ε,δ ]−1 in L2(bD, dλ).

However, by what has been said, the right-hand side of this identity is a bounded operator

in Lp(bD, dλ), thus showing that Sλ extends to a bounded operator in Lp(bD, dλ) for any

1 < p ≤ 2. By duality (and the fact that (Sλ)∗ = Sλ) it follows that Sλ is also bounded

in Lp(bD, dλ) for any 2 ≤ p < ∞. The Lp-regularity problem for Sλ is therefore solved

with P =∞, whenever D is a bounded, strongly pseudoconvex domain of class C2.

2.10. Lp(bD, dλ)-regularity of the Szegő projection: other measures. We recall

from Section 2.7 that the Leray-Levi measure λ and the induced Lebesgue measure σ

are mutually absolutely continuous, see (2.18) and comments thereafter. It follows that

the holomorphic Cauchy-type integrals {Cε}ε are equivalently bounded in Lp(bD, dλ) and

Lp(bD, dσ) and, more generally in Lp(bD, ϕdλ) where ϕ is any continuous function on

bD with uniform upper and lower bounds. On the other hand, if we denote the Szegő

projection for L2(bD, ϕdλ) by Sϕ, there is no direct way to compare Sλ with Sϕ that

would allow to deduce Lp(bD, ϕdλ)-regularity for Sϕ from Lp(bD, dλ)-regularity of Sλ.

12here we are using the hypothesis that the domain D is bounded.
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Instead, what we are able to compare the two adjoints of the operator Cε with respect to

these different measures. Letting A(ϕ)
ε,δ denote the operator analogous to (2.23) (however

now defined for the measure ϕdλ), we have the following inequality [63, Part II]

• ‖A(ϕ)
ε,δ ‖Lp→Lp ≤ ‖A

(λ)
ε,δ ‖Lp→Lp + sup

w∈bD
|ϕ−1(w)| ‖[Cε,δ, ϕ]‖Lp→Lp

where Cε,δ is the operator with kernel χδ(d(w, z))C(ε)(w, z), see (2.17), and [T, ϕ] =

T Mϕ−MϕT denotes the commutator with the multiplication operator Mϕ (multiplication

by ϕ).

Furthermore, we have that [63, Part II]

• ‖[Cε,δ, ϕ]‖Lp→Lp ≤ εMp for any δ ≤ δ0(ε) and for any 0 < ε ≤ ε0.

Taking these two facts into account, the proof of the Lp(bD, ϕdλ)-regularity of Sϕ may

now be obtained by following the same steps as in the proof of the corresponding result

for Sλ on Lp(bD, dλ), see Section 2.9.

3. Further results

3.1. The Bergman projection. One may also state the Lp-regularity problem for the

Bergman projection, that is the orthogonal projection of L2(D, dV ) onto the Bergman

space ϑ(D) ∩ L2(D, dV ) (namely, the space of functions that are holomorphic in D and

square-integrable onD with respect to the measure onD induced by the Lebesgue measure

for Cn via the inclusion: D ⊂ Cn). The Lp-regularity problem for the Bergman projection

was studied by Ligocka [66] in the setting of bounded, strongly pseudconvex domains of

class C4, and was recently extended [60] to the class C2, with Lp(D, dV )-regularity holding

for 1 < p <∞. This problem can be approached in a fashion similar to the Lp-regularity

problem for the Szegő projection, but is in fact simpler than that problem, in several

respects:

• There is no advantage in considering “ad-hoc” volume measures for the domain D

(some “solid” version of the Leray-Levi measure) and one may work directly with the

induced Lebesgue measure dV .

• In this context, the role of the “holomorphic Cauchy integrals” Cε’s is played by “solid”

integral operators Bε acting on Lp(D, dV ), whose kernel is essentially the “derivative” of
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the kernels of the Cε’s, specifically, it is the 2n-form ∂wC̃
(ε)(w, z), see (2.16) (then corrected

to achieve global holomorphicity). Such operators will still produce (and reproduce)

holomorphic functions from merely L1 data, see [61, Propositions 3.1 and 3.2]. By their

nature, these operators are less singular than the Cε’s and their Lp(D, dV )-regularity can

be established by direct means (with no need to invoke the T (1)-theorem, [60, Section

4]).

• The solution of the Lp-regularity problem for the Bergman projection of a strongly

pseudoconvex domain of class C2 now follows a parallel argument to the corresponding

result for the Szegő projection, by proving “ε-smallness” for the kernels of B∗ε −Bε with

ε again tailored to the size of the Lebesgue exponent p, see [60, Sections 5. and 6.].

• In fact one also proves Lp-regularity for the “absolute Bergman projection”, that is

the operator whose kernel is the absolute value of the Bergman kernel, see [60, Section 6]

and [22, Section I.1, Example 1]. (We point out that the corresponding statement for the

“absolute Szegő projection” is known to be false by the very nature of the Szegő kernel,

whose treatment requires cancellation conditions that would be lost by considering its

absolute value.)

3.2. Holomorphic Cauchy integrals below the C2-threshold. A theory of holo-

morphic Cauchy integrals can also be developed for so-called strongly C-linearly convex

domains. While C-linear convexity is a stronger notion than pseudoconvexity (in the sense

that any strongly C-linearly convex domain of class C2 is strongly pseudoconvex but the

converse is not true [62, Proposition 3.2 and Example pg.797]), it is a notion that rests

on only one derivative of the defining function and is therefore naturally meaningful for

domains of class C1. See [3], [45] and [62, Section 3] for the definition and main properties

of C-linear convexity.

In [62] we study existence and regularity of holomorphic Cauchy integrals for bounded,

strongly C-linear convex domains of class C1,1. In this context the C1,1 category plays a

role analogous to the Lipschitz category for a planar domain; the relevant kernel is the

Cauchy-Leray kernel

(3.1) K(w, z) =
1

(2π)n
j∗
(
∂ρ ∧ (∂∂ρ)n−1(w)

〈∂ρ(w), w − z〉n

)
=

dλ(w)

〈∂ρ(w), w − z〉n
.
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• This kernel was first identified by Leray [65] in the context of (strongly convex)

domains of class C2. A new and substantial obstacle that arises in the C1,1 setting is the

fact that the (familiar) numerator of K(w, z) may not make sense: while the Rademacher

Theorem ensures that the C1,1 function ρ be twice differentiable almost everywhere in

Cn, here we are taking its restriction to the boundary bD which is in fact a zero-measure

subset of Cn, and the coefficients of ∂∂ρ may indeed be undefined on bD (explicit examples

can be given); however, the pullback by the inclusion j∗(∂∂ρ) only pertains the tangential

components of such coefficients, which are indeed well-defined, see [62, Proposition 23].

As a result, one has that the Leray-Levi measure dλ is well defined also in this less regular

context, and it is again equivalent to the induced Lebesgue measure dσ, see [62, Section

3.4].

• The strong C-linear convexity of D ensures that the global bound: |〈∂ρ(w), w−z〉| ≥

c|w − z|2 holds for any w ∈ bD and any z ∈ D, see [62, (3.4)]. Thus, the Cauchy-Leray

kernel is globally holomorphic (no need for correction). While not universal in the sense

of Section 2.4, The Cauchy-Leray kernel is canonical in the sense that it does not depend

on the choice of defining function (while each of the numerator and denominator in (3.1)

depend on the choice of defining function ρ, their quotient does not, see [62, Proposition

4.1]). This is in great contrast with the situation for the kernels of the operators C and Cε
considered in sections 2.5 – 2.8, which do depend on the choice of defining function and

are thus non-canonical.

• Letting K denote the Cauchy-Leray operator with kernel (3.1), we prove that K is

bounded in Lp(bD, dλ) for any 1 < p <∞ (and thus Lp(bD, dσ)), by a T (1)-theorem for

a space of homogeneous type again informed by the geometry and regularity of bD (in a

spirit that is similar to the situation described in Sections 2.7 and 2.8), and again under

the simpler cancellation conditions T (1) = 0 = T ∗(1), see [62, Section 6].

• Our hypotheses on the domain D are optimal in the sense that for any 0 < α < 1

there are strongly C-linearly convex domains Dα of class C1,α, for which the Cauchy-Leray

operator K is well-defined but unbounded on each of L2(bD, dλ) and L2(bD, dσ), see [6,

Section 6, Example 2]; similarly, there is a smooth weakly C-linearly convex domain D
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for which K is well-defined but unbounded on each of L2(bD, dλ) and L2(bD, dσ), see [6,

Section 6, Example 1].

• The difference K∗−K has no inherent “smallness”: not even the weaker “ε-smallness”

(2.22) (if, say, one were to approximate ρ with smoother functions τ (ε))13. Thus the study

of the Bergman and Szegő projections for strongly C-linearly convex domains requires a

different approach and is the object of current investigation.

3.3. Representations for the Hardy and Bergman spaces of holomorphic func-

tions. As an application of the Lp-regularity of the holomorphic Cauchy-type integrals

and of the Szegő and Bergman projections we obtain various representations for the Hardy

and Bergman spaces of holomorphic functions. Specifically, for a strongly pseudoconvex

domain of class C2, we have the following, see [64] (see also [58]):

• The space of functions holomorphic in a neighborhood of D is dense in Hp(bD, ϕdλ)

(a consequence of the Lp-regularity of the Cε’s).

• Cε : Lp(bD, ϕdλ)→ Hp(bD, ϕdλ) for any 1 < p <∞. Furthermore, f ∈ Hp(bD, ϕdλ)

if, and only if Cεf = f (again a consequence of the Lp-regularity of the Cε’s).

Corresponding statements hold for the situation when D is strongly C-linearly convex

and of class C1,1 (with the Cε’s replaced by the Cauchy-Leray operator K).

Furthermore, for a strongly pseudoconvex domain of class C2 we have, see [61, Propo-

sition 7.1] and [64]:

• The space of functions holomorphic in a neighborhood of D is dense in ϑ(D) ∩

Lp(D, dV ) (a consequence of the Lp-regularity of the Bε’s).

• Sϕ : Lp(bD, ϕdλ)→ Hp(bD, ϕdλ) for any 1 < p <∞. Moreover, f ∈ Hp(bD, ϕdλ) if,

and only if Sϕf = f (a consequence of the Lp-regularity of Sϕ).
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domains of finite type with locally diagonalizable Levi forms, Publ. Mat. 50 (2006), 413-446.



106 LOREDANA LANZANI∗

[20] Chen S.-C. and Shaw M.-C. Partial differential equations in several complex variables, Amer. Math.

Soc., Providence, (2001).

[21] Christ, M. A T(b)-theorem with remarks on analytic capacity and the Cauchy integral, Colloq.

Math. 60/61 (1990) no. 2, 601-628.

[22] Christ, M. Lectures on singular integral operators CBMS Regional Conf. Series 77, American Math.

Soc., Providence, (1990).

[23] Coifman R., McIntosh A. and Meyer Y., L’intègrale de Cauchy dèfinit un opèrateur bornè sur L2
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[27] David G., Journé J.L. and Semmes, S. Oprateurs de Caldern-Zygmund, fonctions para-accrtives et

interpolation, Rev. Mat. Iberoamericana 1 (1985) no. 4, 1-56.

[28] Duren P. L., Theory of Hp Spaces, Dover, Mineola (2000).

[29] Ehsani, D. and Lieb I., Lp-estimates for the Bergman projection on strictly pseudo-convex non-

smooth domains Math. Nachr. 281 (2008) 916-929.

[30] Fefferman C., The Bergman kernel and biholomorphic mappings of pseudo-convex domains, Invent.

Math. 26 (1974), 1-65.

[31] Federer H., Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band

153, New York: Springer-Verlag New York Inc., pp. xiv+676, ISBN 978-3-540-60656-7.

[32] Folland G. B. and Kohn J. J. The Neumann problem for the Cauchy-Riemann complex, Ann. Math.

Studies 75, Princeton U. Press, Princeton, 1972.

[33] Francsics G. and Hanges N., Explicit formulas for the Szegő kernel on certain weakly pseudoconvex
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[72] McNeal J. and Stein E. M., The Szegö projection on convex domains, Math. Zeit. 224 (1997),

519-553.

[73] Melnikov M. and Verdera J., A geometric proof of the L2 boundedness of the Cauchy integral on

Lipschitz graphs Intern. Math. Res. Notices 7 (1995) 325-331.
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