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Abstract. In this Note we consider a cone Ω in Rn with a vertex at the origin. We

assume that the operator

Pµ := −∆− µ

δ2
Ω(x)

is subcritical in Ω, where δΩ is the distance function to the boundary of Ω and µ ≤ 1/4.

Under some smoothness assumption of Ω, we show that the following improved Hardy-

type inequality∫
Ω

|∇ϕ|2 dx− µ
∫

Ω

|ϕ|2

δ2
Ω

dx ≥ λ(µ)

∫
Ω

|ϕ|2

|x|2
dx ∀ϕ ∈ C∞

0 (Ω),

holds true, and that the above inequality is optimal in some definite sense. The constant

λ(µ) > 0 is given explicitly.

Sunto. In questa nota, consideriamo un cono Ω nello spazio Euclideo Rn, con vertex

all’origine. Sia

Pµ := −∆− µ

δ2
Ω(x)

un operatore sottocritico in Ω, dovè δΩ è la funzione distanza al bordo di Ω, e µ ≤ 1/4.

Sotto qualche ipotesi di regularità su Ω, dimostriamo che la seguente disuguaglianza di

Hardy migliorata∫
Ω

|∇ϕ|2 dx− µ
∫

Ω

|ϕ|2

δ2
Ω

dx ≥ λ(µ)

∫
Ω

|ϕ|2

|x|2
dx ∀ϕ ∈ C∞

0 (Ω),

vale, ed è ottimale in un senso preciso. La costante λ(µ) > 0 è data esplicitamente.
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1. Introduction

Let P be a symmetric and nonnegative second-order linear elliptic operator with real

coefficients which is defined on a domain Ω ⊂ Rn or on a noncompact manifold Ω, and

let q be the associated quadratic form defined on C∞0 (Ω). A Hardy-type inequality with a

weight W 	 0 has the form

(1.1) q(ϕ) ≥ λ

∫
Ω

W (x)|ϕ(x)|2 dx ∀ϕ ∈ C∞0 (Ω),

where λ > 0 is a constant. Such an inequality aims to quantify the positivity of P :

for instance, if (1.1) holds with W ≡ 1 it means that the bottom of the spectrum of the

Friedrichs extension of P is positive, and that the equation (P−λ)u = 0 admits a positive

solution in Ω. A nonnegative operator P is called critical in Ω if the inequality P ≥ 0

cannot be improved, meaning that (1.1) holds true if and only if W ≡ 0. On the other

hand, when (1.1) holds with a nontrivial nonnegative W , then P is said to be subcritical

in Ω.

Given a subcritical operator P in Ω, there is a huge convex set of weights W 	 0 satis-

fying the inequality (1.1); We will call these weights, Hardy-weights. A natural question

is to find “large” Hardy-weights. The search for Hardy-type inequalities with “as large as

possible” weight function W was proposed by Agmon [1, Page 6].

In a recent paper [6], the authors studied a general (not necessarily symmetric) sub-

critical second-order linear elliptic operator P in a domain Ω ⊂ Rn (or a noncompact

manifold), and constructed a Hardy-weight W which is optimal. In the case of symmetric

operator P the main result of [6] reads as follows.

Theorem 1.1 ([6, Theorem 2.2]). Consider a symmetric second-order linear elliptic op-

erator P defined in a domain Ω ⊂ Rn, and let q be the associated quadratic form. Assume

that P is subcritical in Ω. Fix a reference point x0 ∈ Ω, and denote Ω? := Ω \ {x0}.

There exists a nonzero nonnegative weight W satisfying the following properties:

(a) Denote by λ0 = λ0(P,W,Ω?) the largest constant λ satisfying

(1.2) q(ϕ) ≥ λ

∫
Ω?
W (x)|ϕ(x)|2 dx ∀ϕ ∈ C∞0 (Ω?).
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Then λ0 > 0 and the operator P − λ0W is critical in Ω?; that is, the inequality

q(ϕ) ≥
∫

Ω?
V (x)|ϕ(x)|2 dx ∀ϕ ∈ C∞0 (Ω?)

is not valid for any V 	 λ0W .

(b) The constant λ0 is also the best constant for (1.2) with test functions supported in

Ω′ ⊂ Ω, where Ω′ is either the complement of any fixed compact set in Ω containing

x0 or any fixed punctured neighborhood of x0.

(c) The operator P − λ0W is null-critical in Ω?; that is, the corresponding Rayleigh-

Ritz variational problem

(1.3) inf
ϕ∈D1,2

P (Ω?)

{
q(ϕ)∫

Ω?
W (x)|ϕ(x)|2 dx

}
admits no minimizer. Here D1,2

P (Ω?) is the completion of C∞0 (Ω?) with respect to

the norm u 7→
√
q(u).

(d) If furthermore W > 0 in Ω?, then the spectrum and the essential spectrum of

the Friedrichs extension of the operator W−1P on L2(Ω?,W dx) are both equal to

[λ0,∞).

Definition 1.1. A weight function that satisfies properties (a)–(d) is called an optimal

Hardy weight for the symmetric operator P in Ω.

Denote by ∞̄ ideal point in the one-point compactification of Ω. The optimal Hardy

weight W in Theorem 1.1 is obtained by applying the so-called supersolution construction:

It turns out that there are two positive solutions ui, i = 0, 1 of Pu = 0 in Ω? satisfying

lim
x→x0
x∈Ω

u1(x)

u0(x)
= lim

x→∞̄
x∈Ω

u0(x)

u1(x)
= 0;

the optimal Hardy weight W is then given by

W :=
Pu1/2

u1/2

,

where u1/2 := (u0u1)1/2.

In [6, Theorem 11.6], the authors extend Theorem 1.1 and get an optimal Hardy-weight

W in the entire domain Ω, in the case of boundary singularities, where the two singular
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points of the Hardy-weight are located at ∂Ω ∪ {∞̄} and not at ∞̄ and at an isolated

interior point of Ω as in Theorem 1.1. Roughly speaking, we assume that the coefficients

of P are regular up to the (Martin) boundary of Ω outside two Martin boundary points

{ζ0, ζ1}, and that the Martin functions ui at ζi, i = 0, 1, satisfy

(1.4) lim
x→ζ0
x∈Ω

u1(x)

u0(x)
= lim

x→ζ1
x∈Ω

u0(x)

u1(x)
= 0.

Then the supersolution construction produces an optimal Hardy weight W =
Pu1/2

u1/2
, where

u1/2 := (u0u1)1/2.

The following example illustrates [6, Theorem 11.6] and motivates our present study.

Example 1.1 ([6, Example 11.1]). Let P0 = −∆, and consider the cone Ω with vertex

at the origin, and given by

(1.5) Ω := {x ∈ Rn | r(x) > 0, ω(x) ∈ Σ} ,

where Σ is a Lipschitz domain in the unit sphere Sn−1 ⊂ Rn, n ≥ 2, and (r, ω) denotes

the spherical coordinates of x (i.e., r = |x|, and ω = x/|x|).

Let θ be the principal eigenfunction of the (Dirichlet) Laplace-Beltrami operator −∆S

on Σ with principal eigenvalue σ = λ0(−∆S,1,Σ) (for the definition of λ0 see (2.1)), and

set

γ± :=
2− n±

√
(2− n)2 + 4σ

2
.

Then the positive harmonic function

u±(r, w) := rγ±θ(ω)

are the Martin kernels at ∞ and 0 [17] (see also [4]).

Using the supersolution construction it follows that the function

u1/2 := (u0u1)1/2 = r(2−n)/2θ(ω)

is a positive supersolution of the equation Pu = 0 in Ω. The obtained Hardy-weight is

given by

W (x) :=
Pu1/2

u1/2

=
(n− 2)2 + 4σ

4|x|2
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and the corresponding Hardy-type inequality reads as

(1.6)

∫
Ω

|∇ϕ|2 dx ≥ (n− 2)2 + 4σ

4

∫
Ω

|ϕ|2

|x|2
dx ∀ϕ ∈ C∞0 (Ω).

Moreover, it follows from [6, Theorem 11.6] that W is an optimal Hardy-weight, and that

the spectrum and the essential spectrum of W−1(−∆) is [1,∞). Note that for Σ = Sn−1,

n ≥ 3, we obtain the classical Hardy inequality in the punctured space. We also remark

that the Hardy-type inequality (1.6) and the global optimality of the constant (n−2)2+4σ
4

are not new (cf. [8, 14]), however even the fact that (1.6) cannot be improved was not

known before.

Let

δ(x) = δΩ(x) := dist (x, ∂Ω)

be the distance function to the boundary of a domain Ω.

The aim of this Note is to present an extension of the result in Example 1.1 to the case

of the Hardy operator

Pµ := −∆− µ

δ2
Ω(x)

in Ω,

where Ω is the cone defined by (1.5), and µ ≤ µ0 := λ0(−∆, δ−2
Ω ,Ω) (for the definition

of λ0 see (2.1)). In particular, we present an explicit expression for the optimal Hardy

weight W corresponding to the singular points 0 and ∞, for the associate best Hardy

constant, and for the corresponding ground state. Note that since the potential δ−2
Ω (x) is

singular on ∂Ω, [6, Theorem 11.6] is not applicable for Pµ with µ 6= 0, and we had to come

up with new techniques and ideas to treat this case. For some recent results concerning

sharp Hardy inequalities with boundary singularities see [5, 10, 11] and references therein.

The outline of the present paper is as follows. In Section 2 we fix the setting and

notations, and introduce some basic definitions. In Section 3 we use an approximation

argument to obtain two positive multiplicative solutions of the equation Pµu = 0 in Ω of

the form u±(r, w) := rγ±θ(ω), while in Section 4 we use the boundary Harnack principle

of A. Ancona [3] and the methods in [13, 17] to get an explicit representation theorem for

the positive solutions of the equation Pµu = 0 in Ω that vanish (in the potential theory

sense) on ∂Ω \ {0}. Section 5 is devoted to the presentation of our main result. For the
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sake of brevity of this Note, we omit all proofs; they appear in an upcoming paper that

contains further related results, see [7].

2. Preliminaries

In this section we fix our setting and notations, and introduce some basic definitions.

We denote R+ := (0,∞), and

Rn+ := R+ × Rn−1 = {(x1, x2, . . . , xn) ∈ Rn | x1 > 0}.

Throughout the paper Ω ⊂ Rn is a domain, where n ≥ 2. The distance function to the

boundary of Ω is denoted by δΩ. We write Ω1 b Ω if Ω is open, Ω1 is compact and Ω1 ⊂ Ω.

Let f, g : Ω→ [0,∞). We denote f � g if there exists a positive constant C such that

C−1g ≤ f ≤ Cg in Ω. Also, we write f 	 0 in Ω if f ≥ 0 in Ω but f 6= 0 in Ω. We denote

by 1 the constant function taking the value 1 in Ω.

In the present paper we consider a second-order linear elliptic operator P defined on a

domain Ω ⊂ Rn, and let W 	 0 be a given function. It is assumed throughout the paper

that the operator P is symmetric and locally uniformly elliptic. Moreover, we assume

that the coefficients of P and the function W are locally sufficiently regular in Ω (see [6]).

For such an operator P and λ ∈ R, we denote Pλ := P − λW .

Definition 2.1. The operator P is said to be nonnegative in Ω, and we write P ≥ 0 in

Ω, if the equation Pu = 0 in Ω admits a positive (super)solution.

By the well-known Allegretto-Piepenbrink theorem for symmetric second-order elliptic

operators P (see for example [2]), P ≥ 0 in Ω is equivalent to the quadratic form of P

being nonnegative on C∞0 (Ω). Unless otherwise stated, it is assumed that P ≥ 0 in Ω.

For such a nonnegative operator P , we have (see [18]):

Theorem 2.1. Suppose that P is a nonnegative symmetric operator in Ω.

1. The operator P in subcritical in Ω if and only if P admits a positive minimal Green

function in Ω.

2. The operator P in subcritical in Ω if and only if P admits a unique (up to a

multiplicative constant) positive supersolution of the equation Pu = 0 in Ω.
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Definition 2.2. Suppose that P is critical in Ω, then the unique positive (super)solution

of the equation Pu = 0 in Ω is called the (Agmon) ground state of P in Ω.

We emphasize that the notion of subcriticality above is closely related to the improve-

ment of Hardy inequalities. Let P and W 	 0 be as above, the generalized principal

eigenvalue is defined by

(2.1) λ0 := λ0(P,W,Ω) := sup
{
λ ∈ R | Pλ = P − λW ≥ 0 in Ω

}
.

We also define

λ∞ = λ∞(P,W,Ω) := sup
{
λ ∈ R | ∃K ⊂⊂ Ω s.t. Pλ ≥ 0 in Ω \K

}
.

Recall that if the operator P is symmetric in L2(Ω, dx), and W > 0, then λ0 (resp. λ∞)

is the infimum of the L2(Ω, Wdx)-spectrum (resp. L2(Ω, Wdx)-essential spectrum) of

the Friedrichs extension of P̃ := W−1P (see for example [2] and references therein). Note

that P̃ is symmetric on L2(Ω, Wdx), and has the same quadratic form as P .

Throughout the paper we fix a cone

(2.2) Ω := {x ∈ Rn | r(x) > 0, ω(x) ∈ Σ} ,

where Σ is a Lipschitz domain in the unit sphere Sn−1 ⊂ Rn, n ≥ 2. For x ∈ Σ, we will

denote by dΣ(x) the (spherical) distance from x to the boundary of Σ. Note that δΩ is

clearly a homogeneous function of degree 1, that is,

(2.3) δΩ(x) = |x|δΩ

(
x

|x|

)
= rδΩ(ω), and δΩ(x) = sin

(
dΣ(x)

)
near the boundary.

For spectral results and Hardy inequalities with homogeneous weights on Rn see [12].

Since the distance function to the boundary of any domain is Lipschitz continuous,

Euler’s homogeneous function theorem implies that

(2.4) x · ∇δΩ(x) = δΩ(x) a.e. in Ω.

In fact, Euler’s theorem characterizes all sufficiently smooth positive homogeneous func-

tions. Hence, (2.4) characterizes the cones in Rn.
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Let ∆S be the Laplace-Beltrami operator on the unit sphere S := Sn−1. Then in

spherical coordinates, the operator

Pµ := −∆− µ

δΩ(x)2

has the following skew symmetric form

(2.5) Pµu(r, ω) = −∂
2u

∂r2
− n− 1

r

∂u

∂r
+

1

r2

(
−∆Su− µ

u

δ2
Ω(ω)

)
r > 0, ω ∈ Σ.

It turns out that for any Lipschitz cone the Hardy inequality holds true (as in the case

of sufficiently smooth bounded domain [16]).

Lemma 2.1. Let Ω be a Lipschitz cone, and let µ0 := λ0(−∆, δ−2
Ω ,Ω). Then

(2.6) 0 < µ0 ≤
1

4
.

In other words, the following Hardy inequality holds true.

(2.7)

∫
Ω

|∇ϕ|2 dx ≥ µ0

∫
Ω

|ϕ|2

δ2
Ω

dx ∀ϕ ∈ C∞0 (Ω),

where 0 < µ0 ≤ 1
4

is the best constant.

Moreover, µ0 = 1/4 if Ω is convex, and in this case P1/4 is subcritical.

Remark 2.1. Clearly, Pµ is subcritical in Ω for all µ < µ0. We show in Theorem 5.2 that

if µ0 < 1/4, then the operator Pµ0 is critical in Ω (cf. [16, Theorem II]).

3. Positive multiplicative solutions

As above, let Ω be a Lipschitz cone. By Lemma 2.1 the generalized principal eigenvalue

µ0 := λ0(−∆, δ−2
Ω ,Ω) satisfies 0 < µ0 ≤ 1/4. The following theorem shows that for µ ≤ µ0

the equation Pµu = 0 in Ω admits positive multiplicative (separated) solutions.

Theorem 3.1. Let µ ≤ µ0. Then the equation Pµu = 0 in Ω admits positive solutions of

the form

(3.1) u±(x) = |x|γ±φµ
(
x

|x|

)
,

where φµ is a positive solution of the equation

(3.2)

(
−∆S −

µ

δ2
Ω(ω)

)
u = σ(µ)u in Σ,
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(3.3) −(n− 2)2

4
≤ σ(µ) := λ0

(
−∆S −

µ

δ2
Ω

,1,Σ

)
,

and

(3.4) γ± :=
2− n±

√
(2− n)2 + 4σ(µ)

2
.

Moreover, if σ(µ) > − (n−2)2

4
, then there are two linearly independent positive solutions

of the equation Pµu = 0 in Ω of the form (3.1), and Pµ is subcritical in Ω.

In particular, for any µ ≤ µ0 we have σ(µ) > −∞.

Remark 3.1. Note that for n = 2, Σ = S1, and µ = µ0 = 0, we obtain σ(0) = 0, γ± = 0,

and P0 = −∆ is critical in the cone R2 \ {0}.

Remark 3.2. Let Σ be a bounded domain in a smooth Riemannian manifold M , and let

dΣ be the Riemannian distance function to the boundary ∂Σ. If ∂Σ is sufficiently smooth,

then the Hardy inequality with respect to the weight (dΣ)−2 holds in Σ with a positive

constant CH [19]. A sufficient condition for the validity of a such Hardy inequality is that Σ

is boundary distance regular, and this condition holds true if Σ satisfies either the uniform

interior cone condition or the uniform exterior ball condition (see the definitions in [19]).

For other sufficient conditions for the validity of the Hardy inequality on Riemannian

manifolds see for example [15].

Hence, if the cone Ω ⊂ Rn \ {0} is smooth enough, then Σ ⊂ Sn−1 is boundary distance

regular. So, for such Σ ⊂ Sn−1 there exists C > 0 such that −∆S − C
d2

Σ
≥ 0 in Σ. Note

that dΣ(ω) � δΩ(ω)|Σ in Σ, therefore, −∆S − C1

δ2
Ω
≥ 0 in Σ for some C1 > 0.

In the next proposition we study the possible values of the generalized principal eigen-

value of the operator −∆S − µδ−2
Ω in Σ.

Proposition 3.1. Let σ(µ) = λ0(−∆S − µδ−2
Ω ,1,Σ). Then

1. σ(µ) ≥ − (n−2)2

4
for any µ ≤ µ0, and if Σ ∈ C2, and µ0 <

1
4
, then σ(µ0) = − (n−2)2

4
.

2. σ(µ) = −∞ for any µ > 1/4.

3. If Σ ∈ C2, then σ(µ) > −∞ for all µ < 1/4.
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4. The structure of K0
Pµ

(Ω)

As above, let Ω be a Lipschitz cone. By Lemma 2.1 the generalized principal eigenvalue

µ0 := λ0(−∆, δ−2
Ω ,Ω) satisfies 0 < µ0 ≤ 1/4.

Let x1 be a fixed reference point in Ω. Denote by K0
Pµ

(Ω) the convex set of all positive

solutions u of the equation Pµu = 0 in Ω satisfying the normalization condition u(x1) = 1,

and the Dirichlet boundary condition u = 0 on ∂Ω \ {0} in the sense of the Martin

boundary, that is, any u ∈ K0
Pµ

(Ω) has minimal growth on ∂Ω \ {0}. For the definition of

minimal growth on a portion Γ of ∂Ω, see [17].

If µ0 < 1/4 and Σ ∈ C2 outside 0, then in Theorem 5.2 we will show that the operator

Pµ0 is critical in Ω, and therefore, the equation Pµ0u = 0 in Ω admits (up to a multiplicative

constant) a unique positive supersolution. Moreover, by Theorem 3.1, the unique positive

solution is a multiplicative solution of the form (3.1).

The following Theorem characterizes the structure of u ∈ K0
Pµ

(Ω) for any µ < µ0.

Theorem 4.1. Let Ω be a Lipschitz cone, and let µ < µ0 ≤ 1/4. Then K0
Pµ

(Ω) is the

convex hull of two linearly independent positive solutions of the equation Pµu = 0 in Ω of

the form

(4.1) u±(x) = |x|γ±φµ
(
x

|x|

)
,

where φµ is the unique positive solution of the equation

(4.2)

(
−∆S −

µ

δ2
Ω(ω)

)
u = σ(µ)u in Σ,

(4.3) σ(µ) := λ0

(
−∆S −

µ

δ2
Ω

,1,Σ

)
> −(n− 2)2

4
,

and

(4.4) γ± :=
2− n±

√
(2− n)2 + 4σ(µ)

2
.

5. The main result

Recall that by Theorem 3.1, if µ ≤ µ0, then

σ(µ) := λ0

(
−∆− µ

δ2
Ω

,1,Σ

)
≥ −(n− 2)2

4
,
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and there exists a positive solution φµ of the equation(
−∆S −

µ

δ2
Ω

− σ(µ)

)
u = 0 in Σ.

Proposition 5.1. Let Ω be a Lipschitz cone. Let µ ≤ µ0, and let

(5.1) λ(µ) :=
(2− n)2 + 4σ(µ)

4
.

Then λ(µ) ≥ 0, and the following Hardy inequality holds true in Ω:

(5.2)

∫
Ω

|∇ϕ|2 dx− µ
∫

Ω

|ϕ|2

δ2
Ω

dx ≥ λ(µ)

∫
Ω

|ϕ|2

|x|2
dx ∀ϕ ∈ C∞0 (Ω).

Proof. The fact that λ(µ) ≥ 0 follows from σ(µ) ≥ − (n−2)2

4
, which has been proved in

Theorem 3.1. Define

ψ(x) = |x|
2−n

2 φµ

(
x

|x|

)
.

Then, taking into account that(
−∆S − σ(µ)− µ

δ2
Ω

)
φµ = 0 in Σ,

and writing Pµ in spherical coordinates (2.5), it is immediate to check that ψ is a positive

solution of the equation (
Pµ −

λ(µ)

|x|2

)
u = 0 in Ω.

By the Allegretto-Piepenbrink theorem, it follows that the Hardy inequality (5.2) holds

true.

Remark 5.1. In the case µ < µ0, the Hardy inequality (5.2) can be obtained using the

supersolution construction of [6]: indeed, by Theorem 4.1, the equation Pµu = 0 has two

linearly independent, positive solutions in Ω, of the form

u±(x) = |x|γ±φµ
(
x

|x|

)
.

By the supersolution construction ([6, Lemma 5.1]), the function

ψ :=
√
u+u− = |x|

2−n
2 φµ

(
x

|x|

)
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is a positive solution of (
Pµ −

|∇ (u+/u−)|2

4 (u+/u−)2

)
u = 0 in Ω.

It is easy to check that

|∇ (u+/u−)|2

4 (u+/u−)2 =
λ(µ)

|x|2
,

and by the Allegretto-Piepenbrink theorem, the Hardy inequality (5.2) holds.

We first investigate the optimality of the Hardy inequality (5.2) when µ < µ0:

Theorem 5.1. Let Ω be a Lipschitz cone, and let µ < µ0. Then λ(µ) > 0. Furthermore

the weight W := λ(µ)
|x|2 is an optimal Hardy weight for the operator Pµ in Ω in the following

sense:

(1) The operator Pµ− λ(µ)
|x|2 is critical in Ω, i.e. (5.2) holds true, but the Hardy inequality∫

Ω

|∇ϕ|2 dx− µ
∫

Ω

|ϕ|2

δ2
Ω

dx ≥
∫

Ω

V (x)|ϕ|2 dx ∀ϕ ∈ C∞0 (Ω)

does not hold for any V 	 W . In particular,

λ0

(
Pµ,

1

|x|2
,Ω

)
= λ(µ).

(2) The constant λ(µ) is also the best constant for (5.2) with test functions supported

either in ΩR or in Ω \ ΩR, where ΩR is a fixed truncated cone. In particular,

λ∞

(
Pµ,

1

|x|2
,Ω

)
= λ(µ).

(3) The operator Pµ − λ(µ)
|x|2 is null-critical at 0 and at infinity in the following sense:

For any R > 0 the (Agmon) ground state of the operator Pµ − λ(µ)
|x|2 given by

v(x) := |x|(2−n)/2φµ

(
x

|x|

)
satisfies∫

ΩR

(
|∇v|2 − µ |v|

2

δ2
Ω

)
dx =

∫
Ω\ΩR

(
|∇v|2 − µ |v|

2

δ2
Ω

)
dx =∞.
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In particular, the variational problem

inf
ϕ∈D1,2

Pµ
(Ω)


∫

Ω
|∇ϕ|2 dx− µ

∫
Ω
|ϕ|2
δ2
Ω

dx∫
Ω

|ϕ|2

|x|2
dx


does not admit a minimizer.

(4) The spectrum and the essential spectrum of the Friedrichs extension of the operator

W−1Pµ = λ(µ)−1|x|2Pµ on L2(Ω,W dx) are both equal to [1,∞).

Remark 5.2. As we have noticed in Remark 5.1, if µ < µ0, then the Hardy inequality

(5.2) can be obtained by applying the supersolution construction from [6]. Thus, Theorem

5.1 extends Theorem 1.1 to the particular singular case, where Ω is a cone and Pµ is the

Hardy operator (which is singular on ∂Ω).

We now turn to the case µ = µ0, for which we need to assume more regularity on Ω:

Theorem 5.2. Let Ω be a cone such that Σ ∈ C2. Then

1. If µ0 <
1
4
, then λ(µ0) = 0, and the operator Pµ0 is critical in Ω, and null-critical

around 0 and ∞. In particular, the Hardy inequality∫
Ω

|∇ϕ|2 dx ≥ µ0

∫
Ω

ϕ2

δ2
Ω

dx ∀ϕ ∈ C∞0 (Ω),

cannot be improved.

2. If µ0 = 1
4

and λ(1
4
) = 0, then the operator P1/4 is critical in Ω, and null-critical

around 0 and ∞. In particular, the Hardy inequality∫
Ω

|∇ϕ|2 dx ≥ 1

4

∫
Ω

ϕ2

δ2
Ω

dx ∀ϕ ∈ C∞0 (Ω),

cannot be improved.

3. If µ0 = 1
4

and λ(1
4
) > 0, then the weight W :=

λ( 1
4

)

|x|2 is optimal in the sense of

Theorem 5.1. In particular, the Hardy inequality (5.2) cannot be improved.

Remark 5.1. If Ω is a convex cone such that Σ ∈ C2, then we have λ(1
4
) > 0.

In the particular case of the half-space we can compute the constants appearing in

Theorems 5.1 and 5.2.
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Example 5.1 (see [6, Example 11.9] and [9]). Let Ω = Rn+, and µ ≤ 1/4, and consider

the subcritical operator Pµ := −∆− µ
|x1|2 in Ω. Let α+ be the largest root of the equation

α(1− α) = µ, and let

β(µ) := 1− n−
√

1− 4µ = 2− n− 2α+

be the nonzero root of the equation

β
(
β + n− 1 +

√
1− 4µ

)
= 0.

Then

v0(x) := x
α+

1 , v1(x) := x
α+

1 |x|β(µ)

are two positive solutions of the equation Pµu = 0 in Ω that vanish on ∂Ω \ {0}.

Therefore, λ(µ) =
(
β(µ)

)2
/4, and for µ ≤ µ0 = 1/4 we have the following optimal

Hardy inequality∫
Rn+
|∇ϕ|2 dx− µ

∫
Rn+

ϕ2

x2
1

dx≥
(
n− 1 +

√
1− 4µ

2

)2∫
Rn+

ϕ2

|x|2
dx ∀ϕ∈C∞0 (Rn+).

In particular, the operator −∆ − µ
|x1|2 −

λ(µ)
|x|2 is critical in Rn+ with the ground state

ψ(x) := x
α+

1 |x|β(µ)/2. Note that for µ = 0 we obtain the well known (optimal) Hardy

inequality ∫
Rn+
|∇ϕ|2 dx ≥ n2

4

∫
Rn+

ϕ2

|x|2
dx ∀ϕ ∈ C∞0 (Rn+),

while for µ = µ0 = 1/4 we obtain the optimal double Hardy inequality

(5.3)

∫
Rn+
|∇ϕ|2 dx+

1

4

∫
Rn+

1

x2
1

ϕ2 dx ≥ (n− 1)2

4

∫
Rn+

ϕ2

|x|2
dx ∀ϕ ∈ C∞0 (Rn+).

We note that if Ω is any domain admitting a supporting hyperplane H at zero, then

δΩ ≤ δH in Ω. Hence, Example 5.1 implies that for any µ ≤ 1/4 we have

Corollary 5.1. Suppose that a domain Ω admits a supporting hyperplane at zero, then

λ0(Pµ, |x|−2,Ω) ≤
(
n− 1 +

√
1− 4µ

)2

4
.

Assume further that Ω is a cone, then for any µ ≤ µ0 we have

−(n− 2)2

4
≤ σ(µ) := λ0

(
−∆S −

µ

δ2
Ω

,1,Σ

)
≤ 2n− 2− 4µ+ (2n− 2)

√
1− 4µ

4
.
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