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Abstract. Some Lp-Liouville theorems for several classes of evolution equations are

presented. The involved operators are left invariant with respect to Lie group composition

laws in RN+1. Results for both solutions and sub-solutions are given.
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1. Introduction

We present some Lp-Liouville Theorems for solutions and sub-solutions to a class of

evolution equations containing:

heat-type equations on stratified Lie groups

L = L0 − ∂t :=
m∑
j=1

X2
j − ∂t,

where X1, . . . , Xm are smooth first order linear Partial Differential Operators gen-

erating the Lie algebra of a stratified Lie group in RN ;

heat-type equations on stratified Lie groups of the kind

L = L0 − ∂t := div(A∇) + 〈Bx,∇〉 − ∂t,

where A and B are N×N matrices, A is nonnegative definite possibly degenerate;

Fokker-Planck equations of Mumford type:

L = L0 − ∂t := ∂2
x1

+ senx1∂x2 + cosx1∂x3 − ∂t.
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All these operators have in common that are hypoelliptic and left translation invariant

w.r.t. a suitable Lie group composition law in RN+1.

They appear in several contexts, both theoretical and applied: Kinetic Fokker-Planck

equations [HN05], Kolmogorov operators of stochastic equations [DP04], PDEs model

in finance [Pas05], computer and human vision [Mum94], curvature Brownian motion

[WZMC06], phase-noise Fokker-Planck equations [AZ03].

For operators of this kind we prove the following Lp-Liouville theorem:

Lu = 0 in RN+1, u ∈ Lp(RN+1) =⇒ u ≡ 0.

We also show Lp-Liouville type theorems for solutions (in the weak sense of the distribu-

tions) to

Lu ≥ 0 in RN+1.

These last results seem to be useful to give necessary conditions for semilinear equations

like

Lu = f(u) in RN+1

have non-trivial solutions. We plan to address this issue by using ideas by Caristi,

D’Ambrosio and Mitidieri as presented in the paper [CDM08].

2. The heat equation setting

For simplicity, we would like to show our results in the case of the classical heat operator:

L = H := ∆− ∂t,

where ∆ =
∑N

j=1 ∂
2
xj

is the classical Laplace operator in RN . The points of RN+1 will be

denoted by

z = (x, t) = (x1, . . . , xN , t).

As far as we know, even in the classical setting, several of our results are new.

They can be seen as the evolution counterpart of some results related to the classical

Laplacian contained in [CDM08]. We would like to stress, however, a crucial difference

between the heat and the Laplace operators:

the lack of the positive Liouville Theorem.
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More precisely, nonnegative caloric functions in RN+1 are not necessarily constant:

Hu = 0 in RN+1, u ≥ 0 6=⇒ u ≡ const.

This is proved, e.g., by the following function

ex1+···+xN+Nt,

which is strictly positive, caloric and non constant in RN+1. Nevertheless, Lp-Liouville

theorems, in a suitable form, hold true for caloric and sub-caloric functions.

To show our results we use:

the mean value characterization of caloric functions;

a Poisson-Jensen formula for sub-caloric functions;

some results and devices from Parabolic Potential Theory.

2.1. Some recalls from Parabolic Potential Theory.

We start recalling some results from Parabolic Potential Theory that we will use in our

proofs:

The existence of the fundamental solution for the heat operator H

Γ : RN+1 −→ R, Γ(x, t) =

0 if t ≤ 0

(4πt)
−N
2 e−

|x|2
4t if t > 0

,

that allows to define the heat ball or caloric ball of center z = (x, t) and radius r

Ωr(z) =

{
z ∈ RN+1 : Γ(z − ζ) >

1

r

}
and, over this ball, the Watson kernel

Kr(z) = Kr(x, t) =
1

r

|∇xΓ(x, t)|2

Γ2(x, t)
=

1

r

(
|x|
2t

)2

.

Now, we say that a function u ∈ C∞(O,R) is caloric in an open set O ⊆ RN+1 if

Hu = 0 in O

and we recall the following theorem characterizing the caloric functions.

Pini-Watson Theorem. If u is caloric in O then
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(∗) u(z) = Mr(u)(z) :=

ˆ
Ωr(z)

u(ζ)Kr(z − ζ) dζ ∀ Ωr(z) ⊆ O.

Viceversa: if u ∈ C(O,R) satisfies (∗), then

u ∈ C∞(O,R) and H(u) = 0 in O.

We need to recall as well the definition of sub-caloric function and some results related

to sub caloric functions:

A function u : O −→ [−∞,∞[ is sub-caloric if

(i) u is upper semicontinuous;

(ii) u > −∞ in a dense subset in O;

(iii) u(z) ≤Mr(u)(z) ∀ Ωr(z) ⊆ O.

Proposition 2.1. Let u : O −→ [−∞,∞[ be u.s.c. Then u is sub-caloric in O if and

only if

(∗∗) u ∈ L1
loc(O), Hu ≥ 0 in D′(O), u(z) = lim

r↘0
Mr(u)(z).

Moreover, if u ∈ L1
loc(O) is a weak solution to

Hu ≥ 0,

there exists a sub-caloric function û in O s.t.

u(z) = û(z) a.e. in O.

The function û is given by

û(z) := lim
r↘0

Mr(u)(z), z ∈ O.

Remark 2.2. By Riesz-Schwartz Theorem, if u is sub-caloric there exists a nonnegative

Radon measure µ in RN+1 such that

Hu = µ.
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For the sub-caloric functions a caloric Poisson-Jensen formula holds.

If u is sub-caloric in RN+1 and µ = Hu, then

(PJ) u(z) = Mr(u)(z)−Nr(µ)(z) ∀ z ∈ RN+1,

where Mr is the Pini-Watson average operator (∗) and

Nr(µ)(z) :=
1

r

ˆ r

0

(ˆ
Ωρ(z)

(
Γ(z − ζ)− 1

ρ

)
dµ(ζ)

)
dρ.

Next proposition will play a crucial role in what follows.

Proposition 2.3. Let µ be a nonnegative Radon measure in RN+1 such that, for every r,

Nr(µ)(z) = 0 ∀ z ∈ T, T = RN+1.

Then µ ≡ 0.

The last formula we would like to recall is a global representation formula for bounded

above sub-caloric functions.

Let u be sub-caloric in RN+1 such that

U := sup
RN+1

u <∞.

Then, if µ = Hu,

u(z) = U −
ˆ
RN+1

Γ(z − ζ) dµ(ζ) + h(z) ∀z ∈ RN+1,

where h is a caloric function in RN+1, h ≤ 0.

3. Lp-Liouville Theorems for caloric functions

We begin with proving the following theorem:

Theorem 3.1. Let u ∈ C∞(RN+1) be a caloric function

Hu = 0 in RN+1.

Suppose u ∈ Lp(RN+1) for a suitable p ∈ [1,∞].

Then u ≡ 0.



6 ALESSIA E. KOGOJ

Remark 3.2. The analogous result for harmonic functions is an easy consequence of the

Gauss mean value property. Indeed, let ∆u = 0 in RN .

If u ∈ Lp(RN) and 1 ≤ p <∞:

|u(x)| =
∣∣∣∣ u(y) dy

∣∣∣∣ ≤ ( 1

|Br(x)|

) 1
p

‖u‖Lp(RN ) −→ 0 as r −→∞, ∀ x ∈ RN .

This argument does not work for the heat equation because the kernel Kr in the Pini-

Watson mean value Theorem for caloric function is unbounded.

Our approach, for the heat equation, is based on the caloric Poisson-Jensen formula (PJ)

u = Mr(u)−Nr(Hu).

Here is a detailed sketch of the proof of Theorem 3.1.

I step

Lemma 3.3. Let u ∈ C2(RN+1,R) be such that

Hu ≥ 0 (or ≤ 0) in RN+1,

u ∈ L1(RN+1).

Then,

Hu ≡ 0 in RN+1.

Proof. An easy exchange of integrals shows that

ˆ
RN+1

Mr(u)(z) dz =

ˆ
RN+1

u(z) dz ∀r > 0.

Then, from (PJ) we get ˆ
RN+1

Nr(Hu)(z) dz = 0 ∀r > 0.

Since Hu ≥ 0 (≤ 0) everywhere, this gives

Nr(Hu)(z) = 0 a.e. in RN+1,

so that, keeping in mind Proposition 3.4,

Hu ≡ 0 in RN+1.

�
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II step

A simple direct computation shows that if u ∈ C2(RN+1,R) and F ∈ C2(R,R), then

H(F (u)) = F ′(u)H(u) + F ′′(u)|∇xu|2.

III step

Let Hu = 0 in RN+1 and

u ∈ Lp(RN+1), 1 ≤ p <∞.

Define

v := F (u),

where

F : R −→ R, F (t) = (
√

1 + t2 − 1)p =

(
t2√

1 + t2 + 1

)p
.

Since

0 ≤ F (t) ≤ |t|p and F ′′(t) > 0 ∀t 6= 0,

we have

0 ≤ v ≤ |u|p =⇒ v ∈ Lp(RN+1),

H(v) = F ′′(u)|∇xu|2 ≥ 0 in RN+1.

Then, by Lemma 3.3, H(v) ≡ 0, i.e.,

F ′′(u)|∇xu|2 = 0 in RN+1

⇓

|∇xu|2 = 0 in U0 = {u 6= 0}

⇓

∆u = 0 in U0 =⇒ (Hu = 0) ∂tu = 0 in U0

⇓

|∇zu| = 0 in U0

⇓

u ≡ 0 in RN+1.

This proves our Lp-Liouville theorem for 1 ≤ p <∞.
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3.1. Lp-Liouville theorems for 0 < p < 1.

In a similar way to the proof of the previous theorem we can prove that nonnegative

solutions to the heat equation satisfy also a Lp-Liouville property for 0 < p < 1.

Theorem 3.4. Let u be a smooth solution to Hu = 0 in RN+1, u ≥ 0 and

up ∈ L1(RN+1) for p ∈]0, 1[.

Then u ≡ 0.

3.2. Some applications.

The devices used in the proofs of our Lp-Liouville theorems allow to get Liouville-type

theorems for semilinear equations.

Theorem 3.5. Let f : R −→ R be an increasing C1-function such that f−1({0}) = 0.

Define

F : R −→ R, F (t) =

ˆ t

0

f(s) ds.

Let u ∈ C2(RN+1,R) be a classical solution to

Hu = f(u) in RN+1.

If F (u) ∈ L1(RN+1) then

u ≡ 0.

Proof. Define

v := F (u).

Then v ∈ C2(RN+1,R) and

Hv = F ′(u)Hu+ F ′′(u)|∇x|2

= (f(u))2 + f ′(u)|∇x|2 ≥ 0 (f ↗)

Since v ∈ L1(RN+1) from Lemma 3.3 we obtain

Hv ≡ 0 ⇐⇒ (f(u))2 + f ′(u)|∇xu|2 ≡ 0 =⇒ f(u) ≡ 0 =⇒ u ≡ 0.

�
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Corollary 3.6. Hu = λu, λ ≥ 0, u ∈ L2(RN+1) =⇒ u ≡ 0.

Corollary 3.7. Hu = |u|p−1u, 1 ≤ p <∞, u ∈ Lp+1(RN+1) =⇒ u ≡ 0.

4. Lp-Liouville Theorem for sub-caloric functions

We begin proving the following theorem that we will extend later to all the weak

solutions to Hu ≥ 0 in Lp(RN+1).

Theorem 4.1. Let u ∈ L1(RN+1) be a weak solution to

Hu ≥ 0 in RN+1.

Then

u(z) = 0 a.e. in RN+1.

Proof. Let û be a sub-caloric representative of u and let µ ∈ M+(RN+1), µ = Hu. By

caloric Poisson-Jensen formula we have

û = Mr(û)−Nr(µ).

Since û = u a.e., we have û ∈ L1(RN+1). On the other hand,

ˆ
RN+1

û dz =

ˆ
RN+1

Mr(û) dz.

Therefore Nr(µ) ∈ L1(RN+1) and

ˆ
RN+1

Nr(µ) dz = 0.

Since Nr(µ) ≥ 0, this implies Nr(µ) = 0 a.e. in RN+1 and, by Proposition 2.3, µ = 0.

Thus Hû = 0. By Theorem 3.1, û ≡ 0 hence

u(z) = 0 a.e. in RN+1.

�

From this Theorem we obtain,
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Theorem 4.2. Let u ∈ L1
loc(RN+1) be a weak solution

Hu ≥ 0 in D′(RN+1).

Let F : R −→ R be a convex increasing function.

If F (u) ∈ L1(RN+1), then

F (u) = 0 a.e. in RN+1.

Proof. Let û be the sub-caloric representation of u. Define

v := F (û).

Then, v : RN+1 −→ [−∞,∞[ is u.s.c., v(z) > −∞ a.e. in RN+1 and, for every z ∈ RN+1

and r > 0,

v(z) =F (û(z)) ≤ F (Mr(û(z)))

(since û ≤Mr(û) and F ↗)

≤Mr(F (û))(z)

(by the convexity of F and the Jensen inequality)

= Mr(v)(z)

Then, v is sub-caloric. Moreover, since

v(z) = F (û(z)) = F (u(z)) a.e. in RN+1,

we have v ∈ L1(RN+1). By Theorem 4.1, v ≡ 0 so that

F (u)(z) = 0 a.e. in RN+1.

�

The following theorem can be proved exactly as the previous one.

Theorem 4.3. Let u ∈ L1
loc(RN+1) be a nonnegative weak solution of

Hu ≥ 0 in RN+1.

Let F : [0,∞[→ R be a convex increasing function. If F (u) ∈ L1(RN+1), then

F (u) = 0 a.e. in RN+1.
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Corollary 4.4. Let u ∈ Lp(RN+1), 1 ≤ p <∞, be a nonnegative solution of

Hu ≥ 0 in RN+1.

Then

u = 0 a.e. in RN+1.

Proof. Just apply Theorem 4.3 by taking

F (t) = tp.

�

5. Operators to which our results extend

As we wrote in the introduction, our results hold for heat-type equations on stratified Lie

groups, heat-type equations on stratified Lie groups, Fokker-Planck equations of Mumford

type. Actually, these techniques work for a general class of operators

L =
N∑

i,j=1

aij(z)∂xi∂xj +
N∑
j=1

bj(z)∂xj − ∂t in RN+1,

where A = (aij) is a N×N symmetric and positive semidefinite matrix and the coefficients

aij, bj are smooth functions. If the operator is hypoelliptic and not totally degenerate, the

results we need from parabolic potential theory apply to L (see [LP99]). If we require that

there exists a a Lie group composition law ◦ in RN+1 s.t. L is left translation invariant

w.r.t. ◦, all the Liouville-type theorems that we stated for the heat operator until here

still hold.

5.1. Lp-Liouville Theorems for homogeneous operators.

If we suppose, moreover, that there exists a group of dilations

δλ(x1, . . . , xN , t) = (λσ1 , . . . , λσN , λ2t), λ > 0, Q := σ1 + · · ·σN + 2.

such that operators to which our results extend are homogeneous of degree two, we can

improve our results.
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5.1.1. Lp-Liouville Theorems for subsolutions.

In the corollary 4.4 we can drop the sign restriction on u and prove the caloric analogue

of Theorem 4.5 in the quoted paper by Caristi, D’Ambrosio and Mitidieri [CDM08].

Theorem 5.1. Let u ∈ L1
loc(RN+1) be a weak solution of

Lu ≥ 0 in RN+1.

If u ∈ Lp(RN+1) for a suitable p ∈ [1, Q
Q−2

], then

u = 0 a.e. in RN+1.

Proof. Let û be the sub-caloric representative of u.

Then

û+ = min{û, 0} is sub-caloric

and, being û+ = u+ a.e.,

û+ ∈ Lp(RN+1) for some p ∈
[
1,

Q

Q− 2

]
.

By Corollary 4.4, u+ ≡ 0. Then, û ≤ 0.

Then,

û = Û − Γ ∗ µ+ h,

where Û = sup û (≤ 0), µ = Hu, h is caloric and ≤ 0 in RN+1. Since û = u a.e. and

u ∈ Lp(RN+1), û ∈ Lp(RN+1) for some p ∈ [1, Q
Q−2

]. As a consequence, being

û ≤ Û ≤ 0, û ≤ −Γ ∗ µ ≤ 0, û ≤ h ≤ 0,

we have

Û = 0, Γ ∗ µ ∈ Lp(RN+1), h ∈ Lp(RN+1).

By Theorem 3.1, h ≡ 0. Moreover, by next lemma,

µ = 0.

Summing up

û ≡ 0 and

u = 0 a.e. in RN+1.
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�

Lemma 5.2. Let µ be a nonnegative Radon measure such that

Γ ∗ µ ∈ Lp(RN+1)

for some p ∈ [1, 2
Q−2

]. Then µ = 0.

Remark 5.3. For every fixed p > 2
Q−2

there exists µ 6≡ 0 such that

Γ ∗ µ ∈ Lp(RN+1).

5.1.2. L∞-Liouville Theorems. In the case that L is also homogeneous Theorem 3.1 can

be extended to p =∞:

Theorem 5.4. Let u be a solution to

Lu = 0 in RN+1.

If u ∈ L∞(RN+1) then u ≡ const.

We remark that if L is not homogeneous in general this last result does not hold. In

fact, for example, consider the Kolmogorov-type operator in R3 = R2
x × Rt

L = ∂2
x1

+

(
x1 −

1

2
x2

)
∂x1 +

(
1

2
x1 − x2

)
∂x2 − ∂t.

This operator belongs to our class of operators and satisfies all the results of the previous

sections but is not homogeneous and, by a result by Priola and Zabczyk, has a bounded

solution in R3 which is not constant (see [PZ04, Theorem 3.1]).
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