ERRATUM TO INTRINSIC STRATIFICATION OF ANALYTIC VARIETIES

FRANÇOIS TREVES

As stated Theorem 2 is erroneous. The correct statement is the following:

Theorem 2. Let V be an analytic subvariety of the analytic manifold \mathcal{M} . The Nagano foliation of V has the following property:

If two distinct Nagano leaves of V in \mathcal{M} , \mathcal{L}_1 , \mathcal{L}_2 , are such that $\mathcal{L}_1 \cap \overline{\mathcal{L}}_2 \neq \emptyset$ then dim $\mathcal{L}_1 < \dim \mathcal{L}_2$ and $\mathcal{L}_1 \subset \partial \mathcal{L}_2$. Furthermore, the tangent bundle $T\mathcal{L}_1$ is contained in the closure $\overline{T\mathcal{L}}_2$ of $T\mathcal{L}_2$ in $T\mathcal{M}$.

The Nagano foliation is a stratification if and only if it is locally finite. But this might not be the case (contrary to the statement in the article) as shown in the following.

Example 1. Take $\mathbf{V} = \{x \in \mathbb{K}^3; x_1x_2(x_1 - x_2)(x_1 - x_2x_3) = 0\}$, $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , a version of the so-called four moving lines in \mathbb{C}^2 . If $x_1 = x_2 = 0$, $x_3(x_3 - 1) \neq 0$, the Lie algebra $\mathfrak{g}_x(\mathbf{V})$ is generated by the radial vector $x_1\frac{\partial}{\partial x_1} + x_2\frac{\partial}{\partial x_2}$ in the (x_1, x_2) -plane, implying that every such point x is a (zero-dimensional) Nagano leaf.

Bruno Pini Mathematical Analysis Seminar, Vol. 1 (2013) p. 84 Dipartimento di Matematica, Università di Bologna ISSN 2240-2829.